11452

Исследование скважин методом последовательной смены установившихся притоков

Лабораторная работа

География, геология и геодезия

ЛАБОРАТОРНАЯ РАБОТА №1 Исследование скважин методом последовательной смены установившихся притоков. Целью данного исследования скважин является определение коэффициента продуктивности скважин гидропроводности и проницаемости призабойной части пласта. В з

Русский

2013-04-08

750 KB

20 чел.

ЛАБОРАТОРНАЯ РАБОТА №1

Исследование скважин методом последовательной смены

установившихся притоков.

Целью данного исследования скважин является определение коэффициента продуктивности скважин, гидропроводности и проницаемости призабойной части пласта.

В зависимости от коллекторских свойств продуктивного горизонта через 3-5 дней установившейся работы группы скважин с постоянными дебитами и забойными давлениями (динамическими уровнями) изменяется режим работы исследуемой скважины и через 3-45 дней измеряются ее новый дебит и забойное давление. Режим работы исследуемой скважины считается установившимся, если ее дебит и забойное давление не изменяются во времени. Получение исходных данных сводится к замерам дебитов и забойных давлений при последовательной смене 3-х – 4-х режимов установившихся притоков к забою исследуемой скважины. Технология измерения дебита и замера забойного давления в работающей скважине зависит от способа ее эксплуатации. В фонтанных и компрессорных скважинах забойное давление замеряют с помощью глубинных манометров. Дебит фонтанных скважин изменяется сменой  штуцера. Смена режимов работы газлифтных скважин достигается изменением расхода рабочего агента или созданием соответствующих противодавлений на устье.

В скважинах, эксплуатируемых глубинно-насосным способом, изменение дебита производят сменой длины хода полированного штока или изменением числа качаний, а так же путем спуска в скважину насоса другого диаметра.  Забойное давление в глубинно-насосных скважинах, как правило, определяют с помощью эхолотов (волномеров).

 ТЕОРИЯ.

Стационарный приток жидкости в скважину при выполнении закона фильтрации Дарси описывается уравнением притока:

  , (1)

где      -  объемный дебит скважины;

       -  депрессия на пласт;

           -  коэффициент пропорциональности (коэффициент продуктивности скважин).

 

Дебит скважины, с другой стороны, описывается уравнением Дюпюи:

 ,    (2)

              где   k   - проницаемость пласта;  

         h  - толщина пласта;       

         - вязкость жидкости;

        Рпл  - пластовое давление    

        Рс   -  забойное давление в скважине  

         -  половина расстояния между исследуемой и соседними скважинами (среднее значение);

        rп  -  приведенный радиус скважины.

Так как , из сопоставления (1) и (2) следует:

  ,  (3)

где  - гидропроводность пласта,   .

Если по данным исследования скважины построить зависимость ее дебита от забойного давления (индикаторную линию), то коэффициент продуктивности можно вычислить по формуле (рис.1):

      .  (4)

 

Действительно, из (1) следует: q1 = cPkcPc1;  q2 = cPkcPc2.

Тогда   q2q1=cPc1cPc2=c(Pc1Pc2).

Когда забойное давление фиксируется с помощью эхолота, то индикаторная линия соответственно строится в другом виде (рис.2) и формула для вычисления коэффициента продуктивности принимает вид         

             (5)

где  - среднее значение плотности жидкости в затрубном пространстве скважины,

        g   - гравитационное ускорение,

        Н  - Расстояние от устья до уровня жидкости в затрубном пространстве скважины.

Определив коэффициент продуктивности, зная приведенный радиус скважины и расстояние от нее до контура питания, можно вычислить гидропроводность пласта:

  .

Затем рассчитывается проницаемость призабойной зоны пласта:

   ,

где  - вязкость жидкости, фильтрующейся в пласте,

   h  - эффективная толщина пласта.

Для установившегося режима течения жидкости к скважине в круговом пласте формулу Дюпеи можно представить в следующем виде:

   .  (6)

В формуле (6) Р – давление в пласте на расстоянии r от оси скважины.

Из (6) легко получить зависимость давления в пласте от расстояния до оси скважины:

   (7)

Соответственно для распределения уровней жидкости в пьезометрических скважинах, в зависимости от расстояния их от добывающей, формула (7) принимает вид

   (8)

где  Н – глубина от устья до уровня жидкости в пьезометрической скважине, находящейся на расстоянии r от оси добывающей скважины.

Подставим (7) в выражение для дебита:

    (9)

и получим   (10)

или  (11)

В тех случаях, когда нарушается линейный закон фильтрации Дарси (большие дебиты, трещиноватость пласта), зависимость притока жидкости в скважину от давления на её забое получается на графике в виде кривой. Для обработки таких кривых обычно используют двучленную формулу

 P = Aq+Bq2,   (12)

 где    .

Поделив правую и левую части формулы (9) на q,получим уравнение прямой линии в координатах (P/q, q):

                             DRыN HOME OFFICE 2002     4

                                (13)

Поэтому при обработке фактических данных при нарушениях линейного закона фильтрации Дарси строится графическая зависимость отношения P/q от дебита скважины q (рис.3) и по величине отрезка А, отсекаемого на оси ординат определяется коэффициент продуктивности скважины:

  .

Следует иметь в виду, что в реальных промысловых условиях индикаторная линия может искривляться из-за снижения давления на забое скважины ниже давления насыщения. Для обработки таких кривых следует использовать специальные методы [1,2,3], учитывающие фильтрацию газированной жидкости в призабойной зоне скважины.

 

К искривлению индикаторных линий приводит так же изменение работающей мощности пласта в ходе проведения исследований, когда неработающие малопродуктивные пропластки при больших депрессиях на пласт дают дополнительный приток жидкости. В этих случаях необходимо провести дополнительно исследования с помощью дебитометра при различных режимах работы скважины.

Описание работы установки.

Лабораторная работа по исследованию скважин методом установившихся отборов производится на установке (рис.4), в которой цилиндрический пласт (рис.5) заменен параболической моделью (рис.6). Необходимость такой замены связана с тем, что параболическая модель значительно легче в изготовлении и более компактна, чем круговая модель.

 

 

При моделировании должны соблюдаться критерии подобия. Одним из критериев подобия кругового пласта является отношение

                                    .

В промысловых условиях за Rk принимают обычно половину расстояния между скважинами. Тогда величина 1 для реальных пластов будет составлять примерно 1500 – 3000. Таким образом, если в лабораторной модели кругового пласта rп0,03м, то Rк = 4,5 – 9,0 м, то есть модель получилась бы чрезвычайно громоздкой. Создать модель пласта со скважиной меньшего радиуса целесообразно, так как в ней будут проявляться капиллярные эффекты.

Круговая модель пласта обладает и другим серьезным недостатком. В ходе ее эксплуатации песчаная набивка переуплотняется и между кровлей модели и пластом образуются пустоты (каверны). Такой пласт уже относится к другому типу коллектора с иными законами фильтрации.

Площадь фильтрации в параболической и круговой моделях меняются по одному и тому же закону. В круговой модели пласта площадь фильтрации равна:

                                ,

 где    Sф – площадь фильтрации, м2,

        Ri – расстояние от центра скважины до

           площади фильтрации, м;

           h – толщина пласта, м.

В параболической модели площадь сечения, перпендикулярная ее оси, является площадью фильтрации. Площадь сечения параболоида, перпендикулярная его оси, прямо пропорциональна расстоянию от вершины параболоида до этой площади.

              Усеченная вершина параболоида – это аналог скважины, поэтому в параболической модели, как и в круговой, площадь фильтрации прямо пропорциональна расстоянию до скважины.

Таким образом, и в той и в другой модели фильтрационные сопротивления меняются по одному и тому же закону, что позволяет провести описанную выше замену.

Для контроля за распределением давления в модели сделаны отводы на разных расстояниях от вершины параболоида. К каждому отводу подключены два пьезометра, которые выведены на лицевой щит лабораторной установки. Расстояния, на которых сделаны эти отводы, представлены в таблице 1.

Каждый студент бригады при проведении лабораторной работы получает свой вариант исходных данных для проведения последующих вычислений.

Скважина в лабораторной установке моделируется с помощью центрального пьезометра и сливного крана. Сливной кран позволяет регулировать дебит жидкости в установке.

Пьезометры

Расстояние от оси эксплуатационной скважины, м

Вариант 1

Вариант2

Вариант3

Вариант4

Вариант5

Скважина

0,0055

0,0011

0,00275

0,0018

0,00137

1

0,034

0,0058

0,017

0,011

0,0085

2

0,065

0,013

0,0325

0,022

0,0162

3

0,188

0,0374

0,094

0,063

0,047

4

0,498

0,0996

0,249

0,166

0,125

5

0,631

0,1262

0,3155

0,210

0,1578

Контур

питания

0,800

0,16

0,400

0,267

0,200

Постоянное давление на контуре питания в модели пласта поддерживается с помощью сосуда Мариотта (рис.7). На выходе из сосуда давление постоянно и равно:

  ,

где Рв – давление на выходе из сосуда Мариотта, Па;

       в – плотность воды, кг/м3;

       Рат – атмосферное давление, Па.

                                             DRыN HOME OFFICE 2002     7

Давление на выходе из сосуда будет постоянным до того момента, пока уровень жидкости в нём не упадет ниже конца вставленной в него трубки.

            ВЫПОЛНЕНИЕ РАБОТЫ.

Лабораторная работа содержит три задачи:

  1.  Исследовать скважину методом смены установившихся притоков.

Построить индикаторную кривую, определить коэффициент

продуктивности скважины.

  1.  Определить коэффициент гидропроводности пласта и

проницаемость пласта, принимая значения вязкости воды и толщины пласта из табл. 2:

ВАРИАНТ

Вязкость воды, мПАс

Толщина пласта, м

1

1,1

0,011

2

1,3

0,013

3

1,2

0,016

4

1,4

0,012

5

1,5

0,014

  1.  Построить фактическое и расчетное (по формуле(11)) распределения уровней жидкости в пьезометрах при максимальном дебите скважины в зависимости от расстояния до центра скважины (табл.1).

   При выполнении работы необходимо проверить все режимы при

установившемся режиме фильтрации, которое достигается через 10 – 15 минут после изменения дебита скважины. Замер дебита вытекающей из скважины жидкости производится с помощью мензурки и секундомера не менее 3 – х раз.

Результаты замеров заносятся в табл. 3 и 4. Графики выполняются на миллиметровой бумаге.

         Таблица 3.

Результаты исследования скважин

режима

Динамический уровень в скв-не

Количество отобранной жидкости

Время

замера

Дебит

скважины

Среднее значение дебита скважины

Примеч.

м

м3

С

м3

м3

1

50 мл

50 мл

50 мл

2

50 мл

50 мл

50 мл

3

50 мл

50 мл

50 мл

Пьезометры

Расстояние от оси скважины до пьезометра, м

Пьезометрические уровни

На модели,  м

Расчет,   м

Скважина

0,0018

1

0,011

2

0,022

3

0,063

4

0,166

5

0,210

Пьезометр

на контуре питания

0,267


 

  

.

4


 

А также другие работы, которые могут Вас заинтересовать

36184. Конструкции и материалы самонесущих и навесных наружных стен 18.67 KB
  Помимо различных дифференциаций можно выделить 2 типа стен: cамонесущие навесные Самонесущие – стены опирающиеся на фундамент и несущие нагрузку от собственного веса включая нагрузку от балконов эркеров парапетов и других элементов стены по всей высоте но не воспринимающие нагрузки от других частей здания. В соответствии со строительной системой каждый тип стены содержит несколько видов конструкций: бетонные стены из монолитного бетона крупных блоков или панелей; каменные стены ручной кладки стены из каменных блоков и панелей;...
36185. Конструкции и материалы самонесущих и навесных наружных стен. Их особенности 16.22 KB
  Стена отделяет помещение от внешнего пространства наружные стены или от других помещений внутренние стены выполняя тем самым ограждающую функцию. Помимо различных дифференциаций можно выделить 2 типа стен: cамонесущие навесные Самонесущие – стены опирающиеся на фундамент и несущие нагрузку от собственного веса включая нагрузку от балконов эркеров парапетов и других элементов стены по всей высоте но не воспринимающие нагрузки от других частей здания. В соответствии со строительной системой каждый тип стены содержит несколько...
36186. Балконы, лоджии и эркеры 23.87 KB
  Устройство балконов лоджий и эркеров повышает комфортность жилых и общественных помещений и в то же время обогащает пластику фасадов зданий. Лоджии в отличие от балконов по боковым сторонам ограждены стенами и могут быть как встроенными в объем здания так и выносными. ОГРАЖДЕНИЯ БАЛКОНОВ Могут выполняться из различных материалов: непрозрачного стекла пластиков древесных материалов волнистой листовой стали на каркасе и т. КОНСТРУКТИВНЫЕ РЕШЕНИЯ Конструктивное решение балконов зависит от схемы опирания балконной плиты консольное...
36187. Стропильные конструкции крыши, висячие и наслонные стропила 199.92 KB
  Основными несущими элементами крыши являются: мауэрлат стропила и обрешетка. Стропила: Висячие стропила. Висячие стропила опираются только на две крайние опоры например лишь на стены здания без промежуточных опор.
36188. Устройство современных кровель, вентилируемых и невентилируемых, инверсионных кровель 350 KB
  защитный слой выполняемый из мелкого гравия или просеянного шлака втопленного в окрасочный слой битума. Совмещенные крыши: а б невентилируемая; в вентилируемая; 1 защитный слой; 2 рулонный ковер; 3 стяжка; 4 термоизоляция; 5 пароизоляция; 6 вентилируемый канал; 7 несущая конструкция; 8 отделочный слой. Пароизоляционный слой в виде одного или двух слоев рубероида или пергамина на мастике предусматривают для защиты теплоизоляции от увлажнения водяными парами проникающими со стороны внутренних помещений. Поверх...
36189. Естественное освещение помещений 36 KB
  По действующим сейчас правилам все помещения предназначенные для длительного пребывания людей должны иметь естественное освещение. Клеффнера увеличение размеров окон свыше 1 10 1 8 площади пола помещения не дает соответствующего повышения средней освещенности горизонтальной поверхности в помещении. Равномерность освещения при северной ориентации помещений достигается при высоко поднятых окнах с перемычками небольшой высоты при светлых стенах и потолках большой площади окон небольшой глубине помещения а также применением занавесей....
36190. Входные узлы, тамбур, двери. Материалы и основные конструкции 19.19 KB
  Двери как створ различаются по материалу изготовления. Это железные деревянные стеклянные пластиковые алюминиевые двери и др. дция двери: Двери делятся на: внутренние или межкомнатные разделяющие комнаты и входные в квартиры для санитарнотехнических узлов наружные входные в здания тамбурные и специальные например запасные выходы звукоизоляционные двери.
36191. Огнестойкость строительных конструкций и классификация степени сгораемости материалов 43.5 KB
  Продолжительность в часах сопротивления строительной конструкции воздействию высокой температуры при пожаре до исчерпания ею несущей и ограждающей способности принято называть пределом огнестойкости. Предел огнестойкости конструкции определяется опытным или расчетным путем.Он измеряется в см и представляет собой размер повреждения конструкции в контрольной зоне в течение 15 мин. В соответствии со СНиП 11280 Противопожарные нормы проектирования зданий и сооружений по сгораемости строительные конструкции делятся на: несгораемые...
36192. Виды систем канализации. Устройство наружных и внутренних канализационных систем 20.42 KB
  Канализация представляет собой комплекс инженерных сооружений и мероприятий предназначенных для следующих целей: приема сточных вод в местах образования и транспортирования их к очистным сооружениям; очистки и обеззараживания сточных вод; утилизации полезных веществ содержащихся в сточных водах и в их осадке; выпуска очищенных вод в водоем. Системы канализации: Под системой канализации принято понимать совместное или разделительное отведение сточных вод. Общесплавными называют системы канализации при которых все сточные воды ...