11452

Исследование скважин методом последовательной смены установившихся притоков

Лабораторная работа

География, геология и геодезия

ЛАБОРАТОРНАЯ РАБОТА №1 Исследование скважин методом последовательной смены установившихся притоков. Целью данного исследования скважин является определение коэффициента продуктивности скважин гидропроводности и проницаемости призабойной части пласта. В з

Русский

2013-04-08

750 KB

21 чел.

ЛАБОРАТОРНАЯ РАБОТА №1

Исследование скважин методом последовательной смены

установившихся притоков.

Целью данного исследования скважин является определение коэффициента продуктивности скважин, гидропроводности и проницаемости призабойной части пласта.

В зависимости от коллекторских свойств продуктивного горизонта через 3-5 дней установившейся работы группы скважин с постоянными дебитами и забойными давлениями (динамическими уровнями) изменяется режим работы исследуемой скважины и через 3-45 дней измеряются ее новый дебит и забойное давление. Режим работы исследуемой скважины считается установившимся, если ее дебит и забойное давление не изменяются во времени. Получение исходных данных сводится к замерам дебитов и забойных давлений при последовательной смене 3-х – 4-х режимов установившихся притоков к забою исследуемой скважины. Технология измерения дебита и замера забойного давления в работающей скважине зависит от способа ее эксплуатации. В фонтанных и компрессорных скважинах забойное давление замеряют с помощью глубинных манометров. Дебит фонтанных скважин изменяется сменой  штуцера. Смена режимов работы газлифтных скважин достигается изменением расхода рабочего агента или созданием соответствующих противодавлений на устье.

В скважинах, эксплуатируемых глубинно-насосным способом, изменение дебита производят сменой длины хода полированного штока или изменением числа качаний, а так же путем спуска в скважину насоса другого диаметра.  Забойное давление в глубинно-насосных скважинах, как правило, определяют с помощью эхолотов (волномеров).

 ТЕОРИЯ.

Стационарный приток жидкости в скважину при выполнении закона фильтрации Дарси описывается уравнением притока:

  , (1)

где      -  объемный дебит скважины;

       -  депрессия на пласт;

           -  коэффициент пропорциональности (коэффициент продуктивности скважин).

 

Дебит скважины, с другой стороны, описывается уравнением Дюпюи:

 ,    (2)

              где   k   - проницаемость пласта;  

         h  - толщина пласта;       

         - вязкость жидкости;

        Рпл  - пластовое давление    

        Рс   -  забойное давление в скважине  

         -  половина расстояния между исследуемой и соседними скважинами (среднее значение);

        rп  -  приведенный радиус скважины.

Так как , из сопоставления (1) и (2) следует:

  ,  (3)

где  - гидропроводность пласта,   .

Если по данным исследования скважины построить зависимость ее дебита от забойного давления (индикаторную линию), то коэффициент продуктивности можно вычислить по формуле (рис.1):

      .  (4)

 

Действительно, из (1) следует: q1 = cPkcPc1;  q2 = cPkcPc2.

Тогда   q2q1=cPc1cPc2=c(Pc1Pc2).

Когда забойное давление фиксируется с помощью эхолота, то индикаторная линия соответственно строится в другом виде (рис.2) и формула для вычисления коэффициента продуктивности принимает вид         

             (5)

где  - среднее значение плотности жидкости в затрубном пространстве скважины,

        g   - гравитационное ускорение,

        Н  - Расстояние от устья до уровня жидкости в затрубном пространстве скважины.

Определив коэффициент продуктивности, зная приведенный радиус скважины и расстояние от нее до контура питания, можно вычислить гидропроводность пласта:

  .

Затем рассчитывается проницаемость призабойной зоны пласта:

   ,

где  - вязкость жидкости, фильтрующейся в пласте,

   h  - эффективная толщина пласта.

Для установившегося режима течения жидкости к скважине в круговом пласте формулу Дюпеи можно представить в следующем виде:

   .  (6)

В формуле (6) Р – давление в пласте на расстоянии r от оси скважины.

Из (6) легко получить зависимость давления в пласте от расстояния до оси скважины:

   (7)

Соответственно для распределения уровней жидкости в пьезометрических скважинах, в зависимости от расстояния их от добывающей, формула (7) принимает вид

   (8)

где  Н – глубина от устья до уровня жидкости в пьезометрической скважине, находящейся на расстоянии r от оси добывающей скважины.

Подставим (7) в выражение для дебита:

    (9)

и получим   (10)

или  (11)

В тех случаях, когда нарушается линейный закон фильтрации Дарси (большие дебиты, трещиноватость пласта), зависимость притока жидкости в скважину от давления на её забое получается на графике в виде кривой. Для обработки таких кривых обычно используют двучленную формулу

 P = Aq+Bq2,   (12)

 где    .

Поделив правую и левую части формулы (9) на q,получим уравнение прямой линии в координатах (P/q, q):

                             DRыN HOME OFFICE 2002     4

                                (13)

Поэтому при обработке фактических данных при нарушениях линейного закона фильтрации Дарси строится графическая зависимость отношения P/q от дебита скважины q (рис.3) и по величине отрезка А, отсекаемого на оси ординат определяется коэффициент продуктивности скважины:

  .

Следует иметь в виду, что в реальных промысловых условиях индикаторная линия может искривляться из-за снижения давления на забое скважины ниже давления насыщения. Для обработки таких кривых следует использовать специальные методы [1,2,3], учитывающие фильтрацию газированной жидкости в призабойной зоне скважины.

 

К искривлению индикаторных линий приводит так же изменение работающей мощности пласта в ходе проведения исследований, когда неработающие малопродуктивные пропластки при больших депрессиях на пласт дают дополнительный приток жидкости. В этих случаях необходимо провести дополнительно исследования с помощью дебитометра при различных режимах работы скважины.

Описание работы установки.

Лабораторная работа по исследованию скважин методом установившихся отборов производится на установке (рис.4), в которой цилиндрический пласт (рис.5) заменен параболической моделью (рис.6). Необходимость такой замены связана с тем, что параболическая модель значительно легче в изготовлении и более компактна, чем круговая модель.

 

 

При моделировании должны соблюдаться критерии подобия. Одним из критериев подобия кругового пласта является отношение

                                    .

В промысловых условиях за Rk принимают обычно половину расстояния между скважинами. Тогда величина 1 для реальных пластов будет составлять примерно 1500 – 3000. Таким образом, если в лабораторной модели кругового пласта rп0,03м, то Rк = 4,5 – 9,0 м, то есть модель получилась бы чрезвычайно громоздкой. Создать модель пласта со скважиной меньшего радиуса целесообразно, так как в ней будут проявляться капиллярные эффекты.

Круговая модель пласта обладает и другим серьезным недостатком. В ходе ее эксплуатации песчаная набивка переуплотняется и между кровлей модели и пластом образуются пустоты (каверны). Такой пласт уже относится к другому типу коллектора с иными законами фильтрации.

Площадь фильтрации в параболической и круговой моделях меняются по одному и тому же закону. В круговой модели пласта площадь фильтрации равна:

                                ,

 где    Sф – площадь фильтрации, м2,

        Ri – расстояние от центра скважины до

           площади фильтрации, м;

           h – толщина пласта, м.

В параболической модели площадь сечения, перпендикулярная ее оси, является площадью фильтрации. Площадь сечения параболоида, перпендикулярная его оси, прямо пропорциональна расстоянию от вершины параболоида до этой площади.

              Усеченная вершина параболоида – это аналог скважины, поэтому в параболической модели, как и в круговой, площадь фильтрации прямо пропорциональна расстоянию до скважины.

Таким образом, и в той и в другой модели фильтрационные сопротивления меняются по одному и тому же закону, что позволяет провести описанную выше замену.

Для контроля за распределением давления в модели сделаны отводы на разных расстояниях от вершины параболоида. К каждому отводу подключены два пьезометра, которые выведены на лицевой щит лабораторной установки. Расстояния, на которых сделаны эти отводы, представлены в таблице 1.

Каждый студент бригады при проведении лабораторной работы получает свой вариант исходных данных для проведения последующих вычислений.

Скважина в лабораторной установке моделируется с помощью центрального пьезометра и сливного крана. Сливной кран позволяет регулировать дебит жидкости в установке.

Пьезометры

Расстояние от оси эксплуатационной скважины, м

Вариант 1

Вариант2

Вариант3

Вариант4

Вариант5

Скважина

0,0055

0,0011

0,00275

0,0018

0,00137

1

0,034

0,0058

0,017

0,011

0,0085

2

0,065

0,013

0,0325

0,022

0,0162

3

0,188

0,0374

0,094

0,063

0,047

4

0,498

0,0996

0,249

0,166

0,125

5

0,631

0,1262

0,3155

0,210

0,1578

Контур

питания

0,800

0,16

0,400

0,267

0,200

Постоянное давление на контуре питания в модели пласта поддерживается с помощью сосуда Мариотта (рис.7). На выходе из сосуда давление постоянно и равно:

  ,

где Рв – давление на выходе из сосуда Мариотта, Па;

       в – плотность воды, кг/м3;

       Рат – атмосферное давление, Па.

                                             DRыN HOME OFFICE 2002     7

Давление на выходе из сосуда будет постоянным до того момента, пока уровень жидкости в нём не упадет ниже конца вставленной в него трубки.

            ВЫПОЛНЕНИЕ РАБОТЫ.

Лабораторная работа содержит три задачи:

  1.  Исследовать скважину методом смены установившихся притоков.

Построить индикаторную кривую, определить коэффициент

продуктивности скважины.

  1.  Определить коэффициент гидропроводности пласта и

проницаемость пласта, принимая значения вязкости воды и толщины пласта из табл. 2:

ВАРИАНТ

Вязкость воды, мПАс

Толщина пласта, м

1

1,1

0,011

2

1,3

0,013

3

1,2

0,016

4

1,4

0,012

5

1,5

0,014

  1.  Построить фактическое и расчетное (по формуле(11)) распределения уровней жидкости в пьезометрах при максимальном дебите скважины в зависимости от расстояния до центра скважины (табл.1).

   При выполнении работы необходимо проверить все режимы при

установившемся режиме фильтрации, которое достигается через 10 – 15 минут после изменения дебита скважины. Замер дебита вытекающей из скважины жидкости производится с помощью мензурки и секундомера не менее 3 – х раз.

Результаты замеров заносятся в табл. 3 и 4. Графики выполняются на миллиметровой бумаге.

         Таблица 3.

Результаты исследования скважин

режима

Динамический уровень в скв-не

Количество отобранной жидкости

Время

замера

Дебит

скважины

Среднее значение дебита скважины

Примеч.

м

м3

С

м3

м3

1

50 мл

50 мл

50 мл

2

50 мл

50 мл

50 мл

3

50 мл

50 мл

50 мл

Пьезометры

Расстояние от оси скважины до пьезометра, м

Пьезометрические уровни

На модели,  м

Расчет,   м

Скважина

0,0018

1

0,011

2

0,022

3

0,063

4

0,166

5

0,210

Пьезометр

на контуре питания

0,267


 

  

.

4


 

А также другие работы, которые могут Вас заинтересовать

21872. Функции решения в методологии и организации процесса управления 253 KB
  Функции решения в методологии и организации процесса управления.1 Функции решения в методологии и организации процесса управления; 1.2 Понятие управленческого решения и сферы его применения; 1.
21873. Типология управленческих решений 155.5 KB
  Классификация управленческих решений Для разработки и принятия адекватного рассматриваемой проблеме управленческого решения эта работа должна строиться на основе научной классификации управленческих решений. Наиболее широко распространена их классификация по следующим основаниям: сфера деятельности; сроки действия; цели; вид лица принимающего решение ЛПР; уникальность управленческого решения; полнота исходной информации; степень обоснованности решения; ранг управления; масштабность решения; объект...
21874. Условия и факторы качества управленческих решений 47 KB
  Условия и факторы качества управленческих решений. Свойства качественных решений 3. Условия и факторы качества решений 3. Существует показатель косвенно оценивающий качество принятых управленческих решений через количество выполненных решений: Кк = Рв Рн Рп 100 где Кк коэффициент качества управленческих решений; Рп количество принятых управленческих решений; Рв количество выполненных управленческих решений; Рн количество выполненных некачественных решений.
21875. Модели и методология разработки управленческого решения 143.5 KB
  Модель менее сложна чем моделируемый объект и позволяет руководителю лучше разобраться в конкретной ситуации и принять правильное решение. В этой модели основное внимание уделяется роли ожиданий и системы ценностей членов организации их представлениям о ситуации взаимодействию между членами организации.Качество индуктивной модели определяется тем насколько с одной стороны удается упростить описание ситуации принятия решения а с другой насколько верно удается отразить основные свойства моделируемой ситуации. Здесь путь создания...
21876. Гражданский иск как способ восстановления нарушенных прав 339.5 KB
  Объектом работы являются правоотношения, возникающие между государством в лице органов и должностных лиц, осуществляющих производство по уголовному делу и гражданином, в связи с реализацией им права на восстановление нарушенных прав, в том числе и входящего в его структуру права на возмещение имущественного вреда и устранение последствий морального вреда.
21877. Роль автоматизации в процессе производства нефтяного кокса 405.5 KB
  Целью данной курсовой работы является изучение роли автоматизации в процессе производства нефтяного кокса. Актуальность избранной темы вызвана тем, что внедрение специальных автоматических устройств приводит к увеличению количества продукции и улучшению его качества, росту производительности труда, снижению себестоимости продукции, улучшению условий работы, удлинению сроков эксплуатации оборудования и т. д.
21878. Разработка информационных фильтров для программируемых сетевых агентов 548 KB
  Общая теория информационных агентов, дан обзор существующих разработок в области программирования при помощи агентов, введены и формализованы понятия социальной сети как информационного пространства, где действует агент, а также определены специфические функции агента, приведены этапы и результаты разработки сетевого агента.
21879. БАЛЬНЕОЛОГИЧЕСКИЕ РЕСУРСЫ КБР: ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ И ПЕРСПЕКТИВЫ РАЗВИТИЯ (НА ПРИМЕРЕ КУРОРТА НАЛЬЧИК) 1.61 MB
  Изучение природных условий и ресурсов КБР, населения и трудовых ресурсов, хозяйства и экономических предпосылок развития рекреации; Составление характеристики рекреационных ресурсов КБР и их использования: природных, социально-экономических, культурно-исторических ресурсов; Рассмотрение современного курортно-рекреационного комплекса КБР...
21880. Бандитизм (статья 209 УК РФ) 250.5 KB
  Бандитизм - преступления против общественной безопасности, т.е. деяния, признанные уголовным законом грубо нарушающими нормальные условия повседневной жизни и деятельности людей. Эти преступления причиняют или могут причинить существенный вред личным, общественным, и государственным интересам, здоровью, телесной неприкосновенности и достоинству граждан.