11459

РЕАКЦИЯ ИДЕНТИФИКАЦИИ ГИСТАМИНА СОЛЯМИ КОБАЛЬТА

Лабораторная работа

Химия и фармакология

ЛАБОРАТОРНАЯ РАБОТА Реакция идентификации гистамина солями кобальта ПРИНЦИП МЕТОДА. Гистамин реагирует с солями кобальта с образованием окрашенных комплексных солей. Реактивы: 1 раствор гистамина; 2 раствор кобальта нитрата или кобальта хлорида; 3 раствор натри...

Русский

2013-04-08

25 KB

4 чел.

ЛАБОРАТОРНАЯ РАБОТА

Реакция идентификации гистамина солями кобальта

ПРИНЦИП МЕТОДА. Гистамин реагирует с солями кобальта с образованием окрашенных комплексных солей.

Реактивы: 1) раствор гистамина; 2) раствор кобальта нитрата или кобальта хлорида; 3) раствор натрия гидроксида.

Ход работы.

0,01-0,02 г гистамина растворяют в 1 мл воды, добавляют 2-3 капли раствора кобальта нитрата (или кобальта хлорида) и каплю натрия гидроксида. Выпадает осадок красно-фиолетового цвета.


 

А также другие работы, которые могут Вас заинтересовать

21452. Линейные неоднородные дифференциальные уравнения 256.5 KB
  Линейные неоднородные дифференциальные уравнения. Будем рассматривать линейные неоднородные уравнения вида 1 Это уравнение сохраняя прежние обозначения запишем в виде Если при в уравнении 1 все коэффициенты и правая часть fx непрерывны то оно имеет единственное решение удовлетворяющее условиям где – любые действительные числа а – любая точка интервала . Действительно правая часть уравнения 1 В окрестности рассматриваемых...
21453. Комплексные числа. Комплексные числа являются естественным обобщением понятия вещественных чисел 392 KB
  Комплексные числа. Комплексные числа являются естественным обобщением понятия вещественных чисел. При этом числа x и y называются вещественной и мнимой частями соответственного комплексного числа z. Два комплексных числа и считаются равными между собой тогда и только тогда когда равны их вещественные и мнимые части т.
21454. Линейные однородные дифференциальные уравнения с постоянными коэффициентами 234 KB
  Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Оператор L можно представить в следующем виде 1б где – корни характеристического уравнения 4 – их кратности. При n=2 имеем причем где – корни характеристического уравнения Далее Пусть теперь при некотором: где мы...
21455. Системы линейных дифференциальных уравнений 293 KB
  Системы линейных дифференциальных уравнений. Напомним что достаточными условиями существования и единственности решения системы обыкновенных дифференциальных уравнений 1 удовлетворяющего начальным условиям 2 являются: непрерывность всех функций в окрестности начальных значений; выполнение условия Липшица для всех...
21456. Системы линейных дифференциальных уравнений с постоянными коэффициентами 282 KB
  Системы линейных дифференциальных уравнений с постоянными коэффициентами. Итак общее решение однородной системы 1 имеет вид 6 причем векторы 7 частные решения системы 1 которые могут быть получены следующим образом. Итак решения линейно...
21457. Матричная экспонента 394 KB
  а – матрица j – й столбец которой есть решение системы 1а с начальными условиями т. матрица имеет вид и удовлетворяет уравнению Тогда вектор t – решение системы 1а с начальным условием может быть записан в виде т. Запишем теперь jе решение уравнения 1а удовлетворяющее начальному условию где – диагональная матрица вектор столбец коэффициентов и положим где – матрица коэффициентов . Теперь окончательно имеем...
21458. Спектральные приборы 519 KB
  различаются методами спектрометрии приёмниками излучения исследуемым рабочим диапазоном длин волн и др. Форма отверстия в равномерно освещенном экране 1 соответствует функции f описывающей исследуемый спектр распределение энергии излучения по длинам волн . группа 2 информация об исследуемом спектре получается путём одновременной регистрации без сканирования по  несколлькими приёмниками потоков излучения разных длин волн ’ ’’ ’’’ .
21459. Управление света светом 870.5 KB
  ставит очень амбициозную задачу создание устройств выполняющих функции управления характеристиками оптического излучения с помощью другого оптического излучения. Предлагается воспользоваться свойствами поляризованного электромагнитного оптического излучения а именно использовать эффект оптического гашения который описан например в [3]. 1 Если четвертьволновую пластинку P1 установить так чтобы её быстрая ось была ориентирована под углом к оси OX то для излучения прошедшего через пластинку P1 получим = 1 = . 2 Согласно [4]...
21460. Применение лазерного излучения для управления движением атомами и ионами 789.5 KB
  Этот эффект называется охлаждением атомов давлением лазерного излучения. Методы позволяющие с помощью лазерного излучения охлаждать атомы основаны на эффекте вязкой жидкости оптическая патока в которой атомы медленно перемещаются. При охлаждении вещества его энергия и энтропия понижаются поэтому процесс охлаждения возможен если энергия и энтропия излучения после взаимодействия с веществом повышаются.