11485

ВОЗДЕЙСТВИЕ УЛЬТРАЗВУКА НА БИОЛОГИЧЕСКИЕ СРЕДЫ

Лабораторная работа

Биология и генетика

ЛАБОРАТОРНАЯ РАБОТА № 3 ВОЗДЕЙСТВИЕ УЛЬТРАЗВУКА НА БИОЛОГИЧЕСКИЕ СРЕДЫ Цель работы: Изучение механизмов взаимодействия ультразвуковых волн с биологическими объектами. Ультразвук находит широкое применив в современных медицинских приборах и аппаратах ...

Русский

2013-04-08

48.5 KB

12 чел.

ЛАБОРАТОРНАЯ РАБОТА № 3

ВОЗДЕЙСТВИЕ УЛЬТРАЗВУКА НА БИОЛОГИЧЕСКИЕ СРЕДЫ

Цель работы: Изучение механизмов взаимодействия ультразвуковых волн с биологическими объектами.

Ультразвук находит широкое применив в современных медицинских приборах и аппаратах начиная с ультразвуковых диагностических сканеров и кончая устройствами терапевтического и хирургического назначения. Целенаправленная разработка и использование такого рода приборов невозможны без детального исследования возможных механизмов воздействия ультразвуковых колебаний на биологические среды, биологические ткани, отдельные органы и целостный организм. Наиболее исследованными являются следующие механизмы взаимодействия ультразвука с биосредой:

1. Неспецифическое тепловое воздействие, связанное с преобразованием поглощаемой биосредами акустической энергии в тепловую энергию хаотического молекулярного движения. В этом случае величина тепловыделения зависит от интенсивности ультразвуковой волны J, коэффициента поглощения ультразвука , определяющего уменьшение амплитуды А волны при еe распространении в безграничной среде, а также от соотношения характерных размеров биообъекта d      длины ультразвуковой волны. Для плоской ультразвуковой волны в случае d скорость повышения температуры биосреды /dT/dt/ можно оценить по формуле:

          (1)

где - плотность среды, Сm - удельная теплоемкость. Так как коэффициент поглощения ультразвука возрастает с частотой, максимальное влияние теплового эффекта следует ожидать в области достаточно высоких частот /более 1 МГц/.

2. Акустические течения - макроскопические потоки вещества, являющиеся следствием нелинейных эффектов при распространении ультразвуковой волны. Экспериментально акустические течения проявляются в интегральном переносе вещества и могут наблюдаться при воздействии на биосреду ультразвука достаточно высокой интенсивности. При этом, если средой является биологическая ткань, то акустические потоки могут возникать как в межклеточной среде, так и внутри клетки. Наличие акустических течений существенно влияет на обмен веществ между клеткой и окружающей средой, в частности они способны ускорять процессы диффузии лекарственных веществ в мышечную ткань, что широко используется в медицине /явления фонофореза/.

3. Кавитация - нарушение сплошности среды /возникновение кавитационных полостей/ под действием мощного ультразвука. Кавитация сопровождается появлением кавитационных пузырьков и шумовым эффектом /аналог - процесс кипения/. В области образования кавитационных пузырьков возникают значительные напряжения и ударные волны, способные оказывать разрушающее воздействие на клетки и биологические ткани. Данный эффект используют, например, в нейрохирургии. Кавитация является принципиально нелинейным эффектом и возникает при пороговых интенсивностях ультразвука In, зависящих от свойств среды (вязкости, плотности, коэффициента поверхностного натяжения, дисперсности), а также от внешних параметров (температуры и давления). Для многих жидкостей давление  Рn, соответствующее порогу кавитации можно рассчитать из следующей приближенной формулы:

         (2)

где   - коэффициент поверхностного натяжения,  Ргдавление газа,  k - постоянная Больцмана.

Для биологических сред, являющихся существенно гетерогенными, навигационные эффекты могут проявляться в разрушении пространственных образований (например, клеток) и возникновении мелкодисперсных эмульсий.

Целью работы является изучение нелинейных ультразвуковых эффектов, имеющих место при воздействии ультразвука на биологические среды.

Часть I. Определение параметров ультразвукового поля в биологической среде

Порядок выполнения работы:

  1.  Ознакомиться с инструкцией  к ультразвуковому терапевтическому прибору, используемому в качестве источника мощного ультразвука. Подготовить прибор к работе. ВНИМАНИЕ! Запрещается включать прибор без разрешения преподавателя.
  2.  Измерьте амплитуду ультразвуковых колебаний на частоте f=40 кГц.

Для этого:

  1.  Поместите торец концентратора в поле зрения микроскопа.
    1.  Включите тумблер "сеть" на панели прибора.
    2.  Включите магнитостриктор, нажав кнопку соответствувщего канала. ВНИМАНИЕ! Продолжительность включения магнитостриктора - не более 1 мин., после чего отключить его нажатием кнопки "СБРОС".
    3.  Определить размер размытой полосы, соответствующей области колебаний торца концентратора, полуширина этой волосы равна амплитуде ультразвуковых колебаний.
    4.  По полученным значениям амплитуды колебаний  рассчитать амплитуду колебательной скорости V0 =. Рассчитать амплитуду акустического давления Р0 вблизи поверхности концентратора по формуле:

        (3)

для воздуха и воды ( - плотность среды, С – скорость ультразвука).

  1.  Рассчитать значения интенсивности ультразвука до формуле:

        (4)

2.7. Определить общую мощность N, излучаемую концентратором в водную среду по известным значениям интенсивности звука и площади S излучающей поверхности концентратора (диаметр торца концентратора D = 3,6  мм).

Результаты расчета занести в таблицу 1.

Таблица 1.

А, мкм

V0, м/с

Р0, атм

I0, Вт/см2

N, Вт

Pn, атм

воздух     вода

воздух     вода

воздух     масло

Часть II. Изучение механизмов воздействия ультразвука на биосреду

Порядок выполнения работы:

  1.  Поместите излучающий торец концентратора в мензурку с водой на глубину 5 мм. Включите магнитостриктор и убедитесь, что в мензурке возникают макроскопические течения (акустические потоки) и кавитация.
  2.  Налейте в пробирку воду и немного масла. Попробуйте перемешать две жидкости, взболтав их. Обратите внимание на качество (дисперсность) полученной смеси. Опустите в пробирку торец концентратора и включите магнитостриктор. Оцените качество полученной дисперсии.
  3.  Рассчитайте во формуле (2) пороги кавитации по давлению для воды и масла. Занесите данные в таблицу 1 (значения коэффицитентов поверхностного натяжения для воды и масла составляют 0,07 и 0,03 Н/м).

Контрольные вопросы:

  1.  Чем объясняется возникновение кавитации при давлениях, существенно меньших теоретических пороговых значений (см. таблицу 1)?
  2.  Почему в данном случае для оценки теплового эффекта в мышечной ткани формула (1) применима лишь для крупных млекопитающих?

Литература:

Хилл К.Ф. Применение ультразвука в медицине. М: Мир, 1989 г.

PAGE  3


 

А также другие работы, которые могут Вас заинтересовать

33630. Модель Харрисона-Руззо-Ульмана (матричная модель) 32 KB
  Модель ХаррисонаРуззоУльмана матричная модель Модель матрицы права доступа предполагает что состояние разрешения определено используя матрицу соотносящую субъекты объекты и разрешения принадлежащие каждой теме на каждом объекте. Состояние разрешения описано тройкой Q = S О А где S множество субъектов 0 множество объектов А матрица права доступа. Вход s о содержит режимы доступа для которых субъект S разрешается на объекте о. Множество режимов доступа зависит от типа рассматриваемых объектов и функциональных...
33631. Многоуровневые модели 31.5 KB
  К режимам доступа относятся: чтение запись конкатенирование выполнение.7 где b текущее множество доступа. Это множество составлено из троек формы субъект объект режим доступа. Тройка s о т в b указывает что субъект s имеет текущий доступ к объекту о в режиме т; М матрица прав доступа аналогичная матрице прав доступа в модели ХаррисонаРуззоУльмана; f функция уровня которая связывается с каждым субъектом и объектом в системе как уровень их защиты.
33632. Графические модели 44 KB
  Графические модели сети Петри которые позволяют построить модели дискретных систем. Определение: Сеть Петри это набор N =STFWM0 где S непустое множество элементов сети называемое позициями T непустое множество элементов сети называемое переходами отношение инцидентности а W и M0 две функции называемые соответственно кратностью дуг и начальной разметкой. Если п 1 то в графическом представлении сети число n выписывается рядом с короткой чертой пересекающей дугу. Часто такая дуга будет также заменяться пучком из п...
33633. Построение модели систем защиты на базе Е-сетей на основе выделенного набора правил фильтрации 78 KB
  2 Переходы: d3 = XEâ€r3 p1 p2 p3 t3 установление соединения проверка пароля и имени пользователя для доступа к внутренней сети подсети; d4 = XEâ€r4 p2 p4 р5 0 подсчет попыток ввода пароля и имени; d5 = Tp4 p6 0 вывод сообщения о неверном вводе пароля и имени; d6 = Tp1 p6 0 – передача пакета для повторной аутентификации и идентификации; d7 = Tp5 p7 t4 создание соответствующей записи в журнале учета и регистрации. 3 Решающие позиции: r3 проверка пароля и имени пользователя; r4 ...
33634. RSA (буквенная аббревиатура от фамилий Rivest, Shamir и Adleman) 92.5 KB
  Алгоритм RS состоит из следующих пунктов: Выбрать простые числа p и q заданного размера например 512 битов каждое. Вычислить n = p q Вычисляется значение функции Эйлера от числа n: m = p 1 q 1 Выбрать число d взаимно простое с m Два целых числа называются взаимно простыми если они не имеют никаких общих делителей кроме 1. Выбрать число e так чтобы e d = 1 mod m Числа e и d являются ключами. Шифруемые данные необходимо разбить на блоки числа от 0 до n 1.
33635. IDEA (англ. International Data Encryption Algorithm, международный алгоритм шифрования данных) 121 KB
  Interntionl Dt Encryption lgorithm международный алгоритм шифрования данных симметричный блочный алгоритм шифрования данных запатентованный швейцарской фирмой scom. Известен тем что применялся в пакете программ шифрования PGP. Если такое разбиение невозможно используются различные режимы шифрования. Каждый исходный незашифрованный 64битный блок делится на четыре подблока по 16 бит каждый так как все алгебраические операции использующиеся в процессе шифрования совершаются над 16битными числами.
33636. Advanced Encryption Standard (AES) - Алгоритм Rijndael 317.5 KB
  dvnced Encryption Stndrd ES Алгоритм Rijndel Инициатива в разработке ES принадлежит национальному институту стандартов США NIST. Основная цель состояла в создании федерального стандарта США который бы описывал алгоритм шифрования используемый для защиты информации как в государственном так и в частном секторе. В результате длительного процесса оценки был выбрал алгоритм Rijndel в качестве алгоритма в стандарте ES. Алгоритм Rijndel представляет собой симметричный алгоритм блочного шифрования с переменной длиной блока и переменной...
33637. Актуальность проблемы обеспечения безопасности сетевых информационных технологий 13.99 KB
  Отставание в области создания непротиворечивой системы законодательноправового регулирования отношений в сфере накопления использования и защиты информации создает условия для возникновения и широкого распространения компьютерного хулиганства и компьютерной преступности. Особую опасность представляют злоумышленники специалисты – профессионалы в области вычислительной техники и программирования досконально знающие все достоинства и слабые места вычислительных систем и располагающие подробнейшей документацией и самыми совершенными...
33638. Основные понятия информационной безопасности 31 KB
  В связи с бурным процессом информатизации общества все большие объемы информации накапливаются хранятся и обрабатываются в автоматизированных системах построенных на основе современных средств вычислительной техники и связи. Автоматизированная система АС обработки информации – организационнотехническая система представляющая собой совокупность взаимосвязанных компонентов: технических средств обработки и передачи данных методов и алгоритмов обработки в виде соответствующего программного обеспечения информация массивов наборов баз...