11485

ВОЗДЕЙСТВИЕ УЛЬТРАЗВУКА НА БИОЛОГИЧЕСКИЕ СРЕДЫ

Лабораторная работа

Биология и генетика

ЛАБОРАТОРНАЯ РАБОТА № 3 ВОЗДЕЙСТВИЕ УЛЬТРАЗВУКА НА БИОЛОГИЧЕСКИЕ СРЕДЫ Цель работы: Изучение механизмов взаимодействия ультразвуковых волн с биологическими объектами. Ультразвук находит широкое применив в современных медицинских приборах и аппаратах ...

Русский

2013-04-08

48.5 KB

12 чел.

ЛАБОРАТОРНАЯ РАБОТА № 3

ВОЗДЕЙСТВИЕ УЛЬТРАЗВУКА НА БИОЛОГИЧЕСКИЕ СРЕДЫ

Цель работы: Изучение механизмов взаимодействия ультразвуковых волн с биологическими объектами.

Ультразвук находит широкое применив в современных медицинских приборах и аппаратах начиная с ультразвуковых диагностических сканеров и кончая устройствами терапевтического и хирургического назначения. Целенаправленная разработка и использование такого рода приборов невозможны без детального исследования возможных механизмов воздействия ультразвуковых колебаний на биологические среды, биологические ткани, отдельные органы и целостный организм. Наиболее исследованными являются следующие механизмы взаимодействия ультразвука с биосредой:

1. Неспецифическое тепловое воздействие, связанное с преобразованием поглощаемой биосредами акустической энергии в тепловую энергию хаотического молекулярного движения. В этом случае величина тепловыделения зависит от интенсивности ультразвуковой волны J, коэффициента поглощения ультразвука , определяющего уменьшение амплитуды А волны при еe распространении в безграничной среде, а также от соотношения характерных размеров биообъекта d      длины ультразвуковой волны. Для плоской ультразвуковой волны в случае d скорость повышения температуры биосреды /dT/dt/ можно оценить по формуле:

          (1)

где - плотность среды, Сm - удельная теплоемкость. Так как коэффициент поглощения ультразвука возрастает с частотой, максимальное влияние теплового эффекта следует ожидать в области достаточно высоких частот /более 1 МГц/.

2. Акустические течения - макроскопические потоки вещества, являющиеся следствием нелинейных эффектов при распространении ультразвуковой волны. Экспериментально акустические течения проявляются в интегральном переносе вещества и могут наблюдаться при воздействии на биосреду ультразвука достаточно высокой интенсивности. При этом, если средой является биологическая ткань, то акустические потоки могут возникать как в межклеточной среде, так и внутри клетки. Наличие акустических течений существенно влияет на обмен веществ между клеткой и окружающей средой, в частности они способны ускорять процессы диффузии лекарственных веществ в мышечную ткань, что широко используется в медицине /явления фонофореза/.

3. Кавитация - нарушение сплошности среды /возникновение кавитационных полостей/ под действием мощного ультразвука. Кавитация сопровождается появлением кавитационных пузырьков и шумовым эффектом /аналог - процесс кипения/. В области образования кавитационных пузырьков возникают значительные напряжения и ударные волны, способные оказывать разрушающее воздействие на клетки и биологические ткани. Данный эффект используют, например, в нейрохирургии. Кавитация является принципиально нелинейным эффектом и возникает при пороговых интенсивностях ультразвука In, зависящих от свойств среды (вязкости, плотности, коэффициента поверхностного натяжения, дисперсности), а также от внешних параметров (температуры и давления). Для многих жидкостей давление  Рn, соответствующее порогу кавитации можно рассчитать из следующей приближенной формулы:

         (2)

где   - коэффициент поверхностного натяжения,  Ргдавление газа,  k - постоянная Больцмана.

Для биологических сред, являющихся существенно гетерогенными, навигационные эффекты могут проявляться в разрушении пространственных образований (например, клеток) и возникновении мелкодисперсных эмульсий.

Целью работы является изучение нелинейных ультразвуковых эффектов, имеющих место при воздействии ультразвука на биологические среды.

Часть I. Определение параметров ультразвукового поля в биологической среде

Порядок выполнения работы:

  1.  Ознакомиться с инструкцией  к ультразвуковому терапевтическому прибору, используемому в качестве источника мощного ультразвука. Подготовить прибор к работе. ВНИМАНИЕ! Запрещается включать прибор без разрешения преподавателя.
  2.  Измерьте амплитуду ультразвуковых колебаний на частоте f=40 кГц.

Для этого:

  1.  Поместите торец концентратора в поле зрения микроскопа.
    1.  Включите тумблер "сеть" на панели прибора.
    2.  Включите магнитостриктор, нажав кнопку соответствувщего канала. ВНИМАНИЕ! Продолжительность включения магнитостриктора - не более 1 мин., после чего отключить его нажатием кнопки "СБРОС".
    3.  Определить размер размытой полосы, соответствующей области колебаний торца концентратора, полуширина этой волосы равна амплитуде ультразвуковых колебаний.
    4.  По полученным значениям амплитуды колебаний  рассчитать амплитуду колебательной скорости V0 =. Рассчитать амплитуду акустического давления Р0 вблизи поверхности концентратора по формуле:

        (3)

для воздуха и воды ( - плотность среды, С – скорость ультразвука).

  1.  Рассчитать значения интенсивности ультразвука до формуле:

        (4)

2.7. Определить общую мощность N, излучаемую концентратором в водную среду по известным значениям интенсивности звука и площади S излучающей поверхности концентратора (диаметр торца концентратора D = 3,6  мм).

Результаты расчета занести в таблицу 1.

Таблица 1.

А, мкм

V0, м/с

Р0, атм

I0, Вт/см2

N, Вт

Pn, атм

воздух     вода

воздух     вода

воздух     масло

Часть II. Изучение механизмов воздействия ультразвука на биосреду

Порядок выполнения работы:

  1.  Поместите излучающий торец концентратора в мензурку с водой на глубину 5 мм. Включите магнитостриктор и убедитесь, что в мензурке возникают макроскопические течения (акустические потоки) и кавитация.
  2.  Налейте в пробирку воду и немного масла. Попробуйте перемешать две жидкости, взболтав их. Обратите внимание на качество (дисперсность) полученной смеси. Опустите в пробирку торец концентратора и включите магнитостриктор. Оцените качество полученной дисперсии.
  3.  Рассчитайте во формуле (2) пороги кавитации по давлению для воды и масла. Занесите данные в таблицу 1 (значения коэффицитентов поверхностного натяжения для воды и масла составляют 0,07 и 0,03 Н/м).

Контрольные вопросы:

  1.  Чем объясняется возникновение кавитации при давлениях, существенно меньших теоретических пороговых значений (см. таблицу 1)?
  2.  Почему в данном случае для оценки теплового эффекта в мышечной ткани формула (1) применима лишь для крупных млекопитающих?

Литература:

Хилл К.Ф. Применение ультразвука в медицине. М: Мир, 1989 г.

PAGE  3


 

А также другие работы, которые могут Вас заинтересовать

71296. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В РАСПРЕДЕЛЕННЫХ СИСТЕМАХ 205.07 KB
  Необходимо также иметь динамичные способы обращения к информации способы поиска данных в заданные временные интервалы чтобы реализовывать сложную математическую и логическую обработку данных. Принцип централизованной обработки данных рис.1 не отвечал высоким требованиям к надежности процесса...
71297. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В РАЗЛИЧНЫХ ОБЛАСТЯХ ДЕЯТЕЛЬНОСТИ 82.34 KB
  Возможности использования новых информационных технологий в системах организационного управления Современные информационные технологии определяются как непрерывные процессы обработки хранения передачи и отображения информации направленные на эффективное использование информационных ресурсов...
71298. Модели информационных процессов передачи, обработки, накопления данных. Обобщенная схема технологического процесса обработки информации 116.27 KB
  Таким образом важнейшая функция любой системы управления получение информации выполнение процедур по ее обработке с помощью заданных алгоритмов и программ формирование на основе полученных сведений управленческих решений определяющих дальнейшее поведение системы.
71299. ВИДЫ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ 161.62 KB
  Традиционные ИТ существовали в условиях централизованной обработки данных до периода массового использования ПЭВМ. По степени охвата информационными технологиями задач управления выделяют: электронную обработку данных автоматизацию функций управления поддержку принятия решений...
71300. ПОНЯТИЕ ИНФОРМАЦИОННОЙ ТЕХНОЛОГИИ 30.48 KB
  Цель информационной технологии производство информации для ее анализа человеком и принятия на его основе решения по выполнению какого-либо действия. Практическое приложение методов и средств обработки данных может быть различным поэтому целесообразно выделить глобальную базовые и конкретные информационные технологии.
71301. Специализированные кредитно-финансовые институты 19.25 KB
  Межбанковские объединения образуются с целью координации действий повышения эффективности операций и защиты профессиональных интересов участников разработки этических норм и правил взаимоотношений между банковскими учреждениями банками и клиентами.
71302. Цифровые устройства 209 KB
  Связь потенциального логического элемента с предыдущим и последующими узлами в системе осуществляется непосредственно без применения реактивных компонентов. С этой точки зрения в частности и следует понимать действие сигнала на входе логического элемента имеющего...
71303. Генераторы линейно-изменяющегося напряжения (ГЛИН) 180.5 KB
  Устройство сравнения аналоговых сигналов компаратор выполняет функцию сравнения либо двух входных сигналов между собой либо одного входного сигнала с некоторым наперед заданным эталонным уровнем. Первый случай характерен для использования в качестве схемы сравнения операционного усилителя...