11554

Освоить численный метод, алгоритм и программу вычисления производной от таблично заданной функции

Лабораторная работа

Информатика, кибернетика и программирование

Отчет по лабораторной работе №2 Численное дифференцирование 1. Цель работы. Освоить численный метод алгоритм и программу вычисления производной от таблично заданной функции. 2.Задание. Составить алгоритм программу вычисления остаточных членов R для форм

Русский

2013-04-08

86.5 KB

19 чел.

Отчет по лабораторной работе №2

“Численное дифференцирование”

1. Цель работы.

Освоить численный метод, алгоритм и программу вычисления производной от таблично заданной функции.

2.Задание.

Составить алгоритм, программу вычисления остаточных членов R для формул интегрирования методами левых, правых и средних прямоугольников, и методом Симпсона.

Для метода левых, правых и средних прямоугольников:

    (1)

Для формулы Симпсона:

    (2)

Таблица 1 Исходные данные.

Номер варианта

Подинтегральная функция

Пределы интегрирования

07

4*x^3*cosx+x^4*sinx

0 - П/4

Рисунок 1. График функции y= 4*x^3*cosx+x^4*sinx.

3. Программа.

var

mas: array [1..5000] of real;

d1: array [1..1000] of real;

d2: array [1..1000] of real;

d3: array [1..1000] of real;

d4: array [1..1000] of real;

F1,F2,F3,R1,R2, t, h, x, F, y, a, b : real;

i, N: integer;

begin

writeln('vvedite chislo intervalov');

readln (N);

a:=0.0001;

b:=Pi/4;

h:=(b-a)/(N-1);

x:=a;

for i:=1 to N do

begin

y:=4*(x*x*x)*cos(x)+(x*x*x*x)*sin(x);

mas[i]:=y;

x:=x+h;

end;

for i:=1 to N-1 do

begin

d1[i]:=(mas[i+1]-mas[i])/h;

end;

for i:=1 to N-2 do

begin

d2[i]:=(d1[i+1]-d1[i])/h;

end;

for i:=1 to N-3 do

begin

d3[i]:=(d2[i+1]-d2[i])/h;

end;

for i:=1 to N-4 do

begin

d4[i]:=(d3[i+1]-d3[i])/h;

end;

F:=0;

for i:=1 to N-1 do

begin

t:=h*(mas[i]+mas[i+1])/2;

R1:=((h*h*h)*d2[i])/24;

F:=F+t+R1;

end;

writeln ('F=',F,'R=',R1);

F1:=0;

for i:=2 to N do

begin

t:=h*(mas[i]+mas[i+1])/2;

R1:=((h*h*h)*d2[i])/24;

F1:=F1+t+R1;

end;

writeln ('F1=',F1,'R=',R1);

F2:=0;

for i:=1 to N-1 do

begin

t:=h*(mas[i]+mas[i+1])/2;

R1:=((h*h*h)*d2[i])/24;

F2:=F2+t+R1;

end;

writeln ('F2=',F2,'R=',R1);

begin

F3:=0;

for i:=1 to N-1 do

begin

t:=(h/6)*(mas[i]+2*(mas[i]+mas[i+1])+mas[i+1]);

R2:=((h*h*h*h*h)*d4[i])/180;

F3:=F3+t+R2;

end;

writeln ('F3=',F3,'R=',R2);

end;

end.

4. Результаты.

С помощью, приведенной выше программы, были рассчитаны значения интеграла от уравнения, указанного в таблице 1, четырьмя различными способами: методом левых, правых и средних прямоугольников, и методом Симпсона с вычислением остаточного члена R. Точность результатов, получаемая каждым методом различна. Кроме того она зависит от количества отрезков n на которые разбивается интервал интегрирования. Программа позволяет указывать вручную параметр n.  Данные, полученные разными методами, при различном значении n, без добавления остаточного члена R приведены на рисунке 2.

Рисунок 2. Значения интеграла в зависимости от метода и числа отрезков n.

Рисунок 3. Значения интеграла в зависимости от метода и числа отрезков n, с добавлением R.

Таблица 2 Значения интеграла в зависимости от метода и числа отрезков n.

Метод левых

прямоугольников

Метод правых

прямоугольников

Метод средних

прямоугольников

Метод Симпсо

на

n

Δ1

Δ2

Δ3

Δ4

0,345

0,336

0,165

0,345

10

0.0015

0.002

0,005

0.000375

0,342

0,332

0,155

0,342

20

0

0.0015

0,0025

0

0,342

0,329

0,150

0,342

40

0.0005

0,0005

0,001

0.000125

0,341

0,328

0,148

0,341

80

0

0,0005

0,0005

0

0,341

0,327

0,147

0,341

160

0

0

0,0005

0

0,341

0,327

0,146

0,341

320

Таблица 3 Значения интеграла в зависимости от метода и числа отрезков n.

Метод левых

прямоугольников

Метод правых

прямоугольников

Метод средних

прямоугольников

Метод Симпсона

n

Δ1

Δ2

Δ3

Δ4

0.346

0.418

0.346

0.345

10

0.0015

0.021

0.0015

0.000375

0.343

0.376

0.343

0.342

20

0.0005

0.009

0.0005

0

0.342

0.358

0.342

0.342

40

0.0005

0.004

0.0005

0.000125

0.341

0.350

0.341

0.341

80

0

0.0025

0

0

0.341

0.345

0.341

0.341

160

0

0.001

0

0

0.341

0.343

0.341

0.341

320

При нахождении значения интеграла 4-мя различными методами была произведена оценка погрешности данных расчетов методом Рунге:

D=(Fh-Fh/2)/2k-1.

Полученные значения D приведены в таблице 1. Точность, полученная разными методами оказалась различной (таблица 3).

Таблица 4 Значение n при котором достигается необходимая точность, т.е. D<0.001

Метод

Метод левых

прямоугольников

Метод правых

прямоугольников

Метод средних

прямоугольников

Метод Симпсона

n

160

160

80

20

В таблице 4 приведены значения интегралов, вычисленные различными методами при значении n=80, с прибавлением R  и без прибавления.

5. Выводы.

Наиболее точные результаты были получены методам Симпсона и методом средних прямоугольников. Значения, полученные данными методами, уже при n=10 имеют точность до 2-го знака после запятой, а при n=80 погрешность вообще равна 0 (таблица 2 и 3). Значения интеграла от функции 4*x^3*cosx+x^4*sinx, полученные методом правых прямоугольников при различных значениях n, имеют тоже небольшую погрешность, но по сравнению с методом средних прямоугольников и методом Симпсона все-таки имеют худшую погрешность. Таким образом, можно сделать вывод о целесообразности использования на практике формулы Симпсона, либо формулы средних прямоугольников, а при использовании формулы правых, или левых прямоугольников следует помнить о необходимости  задания большого числа отрезков n.    

Для расчета остаточного члена R был использован метод численного вычисления производной. После добавления R при вычислении значений интеграла, можно увидеть, что точность значений вычисленных методами левых и правых прямоугольников несколько снизилась. Значения, полученные методами Симпсона и средних прямоугольников при добавлении и без добавления R, отличаются слабо.   

Таким образом, можно сделать вывод о целесообразности использования на практике формулы Симпсона, либо формулы средних прямоугольников, а при использовании формулы правых, или левых прямоугольников следует помнить о необходимости  задания большого числа отрезков n. Кроме того, прежде чем использовать ту или иную формулу, следует проанализировать графический вид исходной аналитической зависимости, и на основе такого анализа выбрать наиболее подходящий метод вычисления интеграла.


 

А также другие работы, которые могут Вас заинтересовать

68349. Научная и философская проблема языка 84 KB
  Рефлексивное обращение сознания к языку связано с созданием новой науки лингвистики. Лингвистика наука о человеческом языке как средстве общения общих законах его строения и функционирования и обо всех языках мира. Лингвистика то же самое что и языкознание.
68350. Современная Россия и Чеченский кризис 32 KB
  Главной задачей государства является обеспечение наиболее благоприятных условий жизни граждан независимо от национальной и религиозной принадлежности; реализация права на самоопределение самоуправление на территориальных уровнях право на выбор культурной идентичности наделение...
68351. Современное состояние национальных отношений в РФ. Трудности, проблемы. Кризисные явления 25 KB
  Принятие конституции Республики Чечня вроде бы наметило пути разрешения многолетней напряжённости однако теракт 9 мая в Грозном показал что до ситуации спокойствия в республике ещё далеко. Самыми кричащими явлениями выступают республики Башкортостан и Татарстан.
68352. Советская национальная политика в 1930-е года 21 KB
  К концу 1933 года существовало около 250 национальных районов 5000 сельсоветов. С 1921 по 1941 годы произошло значительное повышение уровня грамотности грамотными были уже более 60 миллионов человек одновременно причинами и результатами данного факта являлось издание...
68353. Советская национальная политика в 1920-х годах 27 KB
  Все вновь образованные ССР вошли в состав СССР. Так примерами являются Институт национальной культуры советского Востока кафедра по делам национальностей при Институте советского права НИИ национальностей при ЦИК СССР.
68354. Советская национальная политика в 20-30-е годы 25.5 KB
  Все вновь образованные республики вошли в состав СССР. В 1936 году принята новая Конституция по которой СССР провозглашался союзным государством образованным на основе добровольного объединения равноправных республик.
68355. Советская национальна политика 1945-53 года 23 KB
  На Украине в Молдавии в Прибалтике оставались элементы сотрудничавшие с фашистами и настроенные против власти СССР. Заявление о создании в ходе ВОВ советского народа принципиально нового явления базирующегося на дружбе народов СССР героизме этих народов проявленного в ходе войны который и сплотил их в единую нацию.