11554

Освоить численный метод, алгоритм и программу вычисления производной от таблично заданной функции

Лабораторная работа

Информатика, кибернетика и программирование

Отчет по лабораторной работе №2 Численное дифференцирование 1. Цель работы. Освоить численный метод алгоритм и программу вычисления производной от таблично заданной функции. 2.Задание. Составить алгоритм программу вычисления остаточных членов R для форм

Русский

2013-04-08

86.5 KB

19 чел.

Отчет по лабораторной работе №2

“Численное дифференцирование”

1. Цель работы.

Освоить численный метод, алгоритм и программу вычисления производной от таблично заданной функции.

2.Задание.

Составить алгоритм, программу вычисления остаточных членов R для формул интегрирования методами левых, правых и средних прямоугольников, и методом Симпсона.

Для метода левых, правых и средних прямоугольников:

    (1)

Для формулы Симпсона:

    (2)

Таблица 1 Исходные данные.

Номер варианта

Подинтегральная функция

Пределы интегрирования

07

4*x^3*cosx+x^4*sinx

0 - П/4

Рисунок 1. График функции y= 4*x^3*cosx+x^4*sinx.

3. Программа.

var

mas: array [1..5000] of real;

d1: array [1..1000] of real;

d2: array [1..1000] of real;

d3: array [1..1000] of real;

d4: array [1..1000] of real;

F1,F2,F3,R1,R2, t, h, x, F, y, a, b : real;

i, N: integer;

begin

writeln('vvedite chislo intervalov');

readln (N);

a:=0.0001;

b:=Pi/4;

h:=(b-a)/(N-1);

x:=a;

for i:=1 to N do

begin

y:=4*(x*x*x)*cos(x)+(x*x*x*x)*sin(x);

mas[i]:=y;

x:=x+h;

end;

for i:=1 to N-1 do

begin

d1[i]:=(mas[i+1]-mas[i])/h;

end;

for i:=1 to N-2 do

begin

d2[i]:=(d1[i+1]-d1[i])/h;

end;

for i:=1 to N-3 do

begin

d3[i]:=(d2[i+1]-d2[i])/h;

end;

for i:=1 to N-4 do

begin

d4[i]:=(d3[i+1]-d3[i])/h;

end;

F:=0;

for i:=1 to N-1 do

begin

t:=h*(mas[i]+mas[i+1])/2;

R1:=((h*h*h)*d2[i])/24;

F:=F+t+R1;

end;

writeln ('F=',F,'R=',R1);

F1:=0;

for i:=2 to N do

begin

t:=h*(mas[i]+mas[i+1])/2;

R1:=((h*h*h)*d2[i])/24;

F1:=F1+t+R1;

end;

writeln ('F1=',F1,'R=',R1);

F2:=0;

for i:=1 to N-1 do

begin

t:=h*(mas[i]+mas[i+1])/2;

R1:=((h*h*h)*d2[i])/24;

F2:=F2+t+R1;

end;

writeln ('F2=',F2,'R=',R1);

begin

F3:=0;

for i:=1 to N-1 do

begin

t:=(h/6)*(mas[i]+2*(mas[i]+mas[i+1])+mas[i+1]);

R2:=((h*h*h*h*h)*d4[i])/180;

F3:=F3+t+R2;

end;

writeln ('F3=',F3,'R=',R2);

end;

end.

4. Результаты.

С помощью, приведенной выше программы, были рассчитаны значения интеграла от уравнения, указанного в таблице 1, четырьмя различными способами: методом левых, правых и средних прямоугольников, и методом Симпсона с вычислением остаточного члена R. Точность результатов, получаемая каждым методом различна. Кроме того она зависит от количества отрезков n на которые разбивается интервал интегрирования. Программа позволяет указывать вручную параметр n.  Данные, полученные разными методами, при различном значении n, без добавления остаточного члена R приведены на рисунке 2.

Рисунок 2. Значения интеграла в зависимости от метода и числа отрезков n.

Рисунок 3. Значения интеграла в зависимости от метода и числа отрезков n, с добавлением R.

Таблица 2 Значения интеграла в зависимости от метода и числа отрезков n.

Метод левых

прямоугольников

Метод правых

прямоугольников

Метод средних

прямоугольников

Метод Симпсо

на

n

Δ1

Δ2

Δ3

Δ4

0,345

0,336

0,165

0,345

10

0.0015

0.002

0,005

0.000375

0,342

0,332

0,155

0,342

20

0

0.0015

0,0025

0

0,342

0,329

0,150

0,342

40

0.0005

0,0005

0,001

0.000125

0,341

0,328

0,148

0,341

80

0

0,0005

0,0005

0

0,341

0,327

0,147

0,341

160

0

0

0,0005

0

0,341

0,327

0,146

0,341

320

Таблица 3 Значения интеграла в зависимости от метода и числа отрезков n.

Метод левых

прямоугольников

Метод правых

прямоугольников

Метод средних

прямоугольников

Метод Симпсона

n

Δ1

Δ2

Δ3

Δ4

0.346

0.418

0.346

0.345

10

0.0015

0.021

0.0015

0.000375

0.343

0.376

0.343

0.342

20

0.0005

0.009

0.0005

0

0.342

0.358

0.342

0.342

40

0.0005

0.004

0.0005

0.000125

0.341

0.350

0.341

0.341

80

0

0.0025

0

0

0.341

0.345

0.341

0.341

160

0

0.001

0

0

0.341

0.343

0.341

0.341

320

При нахождении значения интеграла 4-мя различными методами была произведена оценка погрешности данных расчетов методом Рунге:

D=(Fh-Fh/2)/2k-1.

Полученные значения D приведены в таблице 1. Точность, полученная разными методами оказалась различной (таблица 3).

Таблица 4 Значение n при котором достигается необходимая точность, т.е. D<0.001

Метод

Метод левых

прямоугольников

Метод правых

прямоугольников

Метод средних

прямоугольников

Метод Симпсона

n

160

160

80

20

В таблице 4 приведены значения интегралов, вычисленные различными методами при значении n=80, с прибавлением R  и без прибавления.

5. Выводы.

Наиболее точные результаты были получены методам Симпсона и методом средних прямоугольников. Значения, полученные данными методами, уже при n=10 имеют точность до 2-го знака после запятой, а при n=80 погрешность вообще равна 0 (таблица 2 и 3). Значения интеграла от функции 4*x^3*cosx+x^4*sinx, полученные методом правых прямоугольников при различных значениях n, имеют тоже небольшую погрешность, но по сравнению с методом средних прямоугольников и методом Симпсона все-таки имеют худшую погрешность. Таким образом, можно сделать вывод о целесообразности использования на практике формулы Симпсона, либо формулы средних прямоугольников, а при использовании формулы правых, или левых прямоугольников следует помнить о необходимости  задания большого числа отрезков n.    

Для расчета остаточного члена R был использован метод численного вычисления производной. После добавления R при вычислении значений интеграла, можно увидеть, что точность значений вычисленных методами левых и правых прямоугольников несколько снизилась. Значения, полученные методами Симпсона и средних прямоугольников при добавлении и без добавления R, отличаются слабо.   

Таким образом, можно сделать вывод о целесообразности использования на практике формулы Симпсона, либо формулы средних прямоугольников, а при использовании формулы правых, или левых прямоугольников следует помнить о необходимости  задания большого числа отрезков n. Кроме того, прежде чем использовать ту или иную формулу, следует проанализировать графический вид исходной аналитической зависимости, и на основе такого анализа выбрать наиболее подходящий метод вычисления интеграла.


 

А также другие работы, которые могут Вас заинтересовать

12577. ЗАКОН ОМА И ПРАВИЛА КИРХГОФА ДЛЯ РАЗВЕТВЛЕННЫХ ЦЕПЕЙ 342.31 KB
  Лабораторная работа №22;24. ЗАКОН ОМА И ПРАВИЛА КИРХГОФА ДЛЯ РАЗВЕТВЛЕННЫХ ЦЕПЕЙ ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА ЛАБОРАТОРНАЯ РАБОТА № 2.2ЗАКОН ОМА И ПРАВИЛА КИРХГОФА ДЛЯ РАЗВЕТВЛЕННЫХ ЦЕПЕЙ Цель работы: изучение закона Ома и закрепление навыков ра
12578. Організація системи мерчандайзингу у виробничій/збутовій компанії 34.66 KB
  Через загострення конкуренції на ринку як продовольчих, так і непродовольчих товарів і прискоренням товарообігу кожна виробнича/збутова компанія так чи інакше замислюється про мерчандайзинг своєї продукції. Мерчандайзинг перетворюється з додаткової конкурентної переваги в обовязкову функцію служби продажу.
12579. Метод определения критической температуры Тк давления Рк для СО2 по появлению и исчезновению мениска 106.06 KB
  ВВЕДЕНИЕ Исследование критического состояния вещества необходимо не только с прикладной точки зрения но имеет и большое теоретическое значение. Особенности поведения вещества вблизи критической точки системы жидкостьпар определенным образом характеризуют структу
12580. Фармацевтический холокост - концлагерь для человечества 503.5 KB
  Прима Андрей Фармацевтический холокост концлагерь для человечества Смертельные болезни и препаратыубийцы АЗТ 2007г. Поводом к написанию этой книги послужили реальные события недавнего времени произошедшие с её и автором. Жизненная ситуация с которой он ст
12581. ИССЛЕДОВАНИЕ ХОЛОКОСТА. Глобальное видение 2.15 MB
  ИССЛЕДОВАНИЕ ХОЛОКОСТА. Глобальное видение. Материалы международной Тегеранской конференции 1112 декабря 2006 года. Минск ЗАО Христианская инициатива 2007 Исследование холокоста Глобальное видение. Материалы международной Тегеранской к
12582. Холокост. Общие сведения 402 KB
  ХОЛОКОСТ Реферат Холоко́ст англ. holocaust термин под которым сионистская пропаганда понимает систематическое уничтожение по заранее разработанному плану Германией и её союзниками в ходе Второй Мировой войны всех евреев только за то что они евреи. Теория холокост
12583. Освенцим: мифы и факты 41.55 KB
  Освенцим: мифы и факты Марк Вебер Почти всякий слышал об Освенциме на Западе Освенцим называется Аушвиц примеч. перев. немецком концентрационном лагере 2й Мировой войны где как утверждается были истреблены массы заключенных главным образом евреев в газовых кам
12584. М. Вебер Холокост: нужно выслушать обе стороны 34.42 KB
  М. Вебер Холокост: нужно выслушать обе стороны Почти каждый слышал что немцы убили во время Второй мировой войны шесть миллионов европейских евреев. Американское телевидение кино газеты и журналы постоянно муссируют эту тему. В столице США Вашингтоне построен огр...
12585. Опровержение холокоста 122.5 KB
  ОПРОВЕРЖЕНИЕ ХОЛДОКОСТА Холокост от англ. holocaust из др.греч. ὁλοκαύστος всесожжение жертвоприношение у евреев при котором жертва животное полностью пожиралась огнем: дегенераты зачемто мучили бедных животных. Для того чтобы сжечь 6 шесть млн. всем имевшим...