11554

Освоить численный метод, алгоритм и программу вычисления производной от таблично заданной функции

Лабораторная работа

Информатика, кибернетика и программирование

Отчет по лабораторной работе №2 Численное дифференцирование 1. Цель работы. Освоить численный метод алгоритм и программу вычисления производной от таблично заданной функции. 2.Задание. Составить алгоритм программу вычисления остаточных членов R для форм

Русский

2013-04-08

86.5 KB

19 чел.

Отчет по лабораторной работе №2

“Численное дифференцирование”

1. Цель работы.

Освоить численный метод, алгоритм и программу вычисления производной от таблично заданной функции.

2.Задание.

Составить алгоритм, программу вычисления остаточных членов R для формул интегрирования методами левых, правых и средних прямоугольников, и методом Симпсона.

Для метода левых, правых и средних прямоугольников:

    (1)

Для формулы Симпсона:

    (2)

Таблица 1 Исходные данные.

Номер варианта

Подинтегральная функция

Пределы интегрирования

07

4*x^3*cosx+x^4*sinx

0 - П/4

Рисунок 1. График функции y= 4*x^3*cosx+x^4*sinx.

3. Программа.

var

mas: array [1..5000] of real;

d1: array [1..1000] of real;

d2: array [1..1000] of real;

d3: array [1..1000] of real;

d4: array [1..1000] of real;

F1,F2,F3,R1,R2, t, h, x, F, y, a, b : real;

i, N: integer;

begin

writeln('vvedite chislo intervalov');

readln (N);

a:=0.0001;

b:=Pi/4;

h:=(b-a)/(N-1);

x:=a;

for i:=1 to N do

begin

y:=4*(x*x*x)*cos(x)+(x*x*x*x)*sin(x);

mas[i]:=y;

x:=x+h;

end;

for i:=1 to N-1 do

begin

d1[i]:=(mas[i+1]-mas[i])/h;

end;

for i:=1 to N-2 do

begin

d2[i]:=(d1[i+1]-d1[i])/h;

end;

for i:=1 to N-3 do

begin

d3[i]:=(d2[i+1]-d2[i])/h;

end;

for i:=1 to N-4 do

begin

d4[i]:=(d3[i+1]-d3[i])/h;

end;

F:=0;

for i:=1 to N-1 do

begin

t:=h*(mas[i]+mas[i+1])/2;

R1:=((h*h*h)*d2[i])/24;

F:=F+t+R1;

end;

writeln ('F=',F,'R=',R1);

F1:=0;

for i:=2 to N do

begin

t:=h*(mas[i]+mas[i+1])/2;

R1:=((h*h*h)*d2[i])/24;

F1:=F1+t+R1;

end;

writeln ('F1=',F1,'R=',R1);

F2:=0;

for i:=1 to N-1 do

begin

t:=h*(mas[i]+mas[i+1])/2;

R1:=((h*h*h)*d2[i])/24;

F2:=F2+t+R1;

end;

writeln ('F2=',F2,'R=',R1);

begin

F3:=0;

for i:=1 to N-1 do

begin

t:=(h/6)*(mas[i]+2*(mas[i]+mas[i+1])+mas[i+1]);

R2:=((h*h*h*h*h)*d4[i])/180;

F3:=F3+t+R2;

end;

writeln ('F3=',F3,'R=',R2);

end;

end.

4. Результаты.

С помощью, приведенной выше программы, были рассчитаны значения интеграла от уравнения, указанного в таблице 1, четырьмя различными способами: методом левых, правых и средних прямоугольников, и методом Симпсона с вычислением остаточного члена R. Точность результатов, получаемая каждым методом различна. Кроме того она зависит от количества отрезков n на которые разбивается интервал интегрирования. Программа позволяет указывать вручную параметр n.  Данные, полученные разными методами, при различном значении n, без добавления остаточного члена R приведены на рисунке 2.

Рисунок 2. Значения интеграла в зависимости от метода и числа отрезков n.

Рисунок 3. Значения интеграла в зависимости от метода и числа отрезков n, с добавлением R.

Таблица 2 Значения интеграла в зависимости от метода и числа отрезков n.

Метод левых

прямоугольников

Метод правых

прямоугольников

Метод средних

прямоугольников

Метод Симпсо

на

n

Δ1

Δ2

Δ3

Δ4

0,345

0,336

0,165

0,345

10

0.0015

0.002

0,005

0.000375

0,342

0,332

0,155

0,342

20

0

0.0015

0,0025

0

0,342

0,329

0,150

0,342

40

0.0005

0,0005

0,001

0.000125

0,341

0,328

0,148

0,341

80

0

0,0005

0,0005

0

0,341

0,327

0,147

0,341

160

0

0

0,0005

0

0,341

0,327

0,146

0,341

320

Таблица 3 Значения интеграла в зависимости от метода и числа отрезков n.

Метод левых

прямоугольников

Метод правых

прямоугольников

Метод средних

прямоугольников

Метод Симпсона

n

Δ1

Δ2

Δ3

Δ4

0.346

0.418

0.346

0.345

10

0.0015

0.021

0.0015

0.000375

0.343

0.376

0.343

0.342

20

0.0005

0.009

0.0005

0

0.342

0.358

0.342

0.342

40

0.0005

0.004

0.0005

0.000125

0.341

0.350

0.341

0.341

80

0

0.0025

0

0

0.341

0.345

0.341

0.341

160

0

0.001

0

0

0.341

0.343

0.341

0.341

320

При нахождении значения интеграла 4-мя различными методами была произведена оценка погрешности данных расчетов методом Рунге:

D=(Fh-Fh/2)/2k-1.

Полученные значения D приведены в таблице 1. Точность, полученная разными методами оказалась различной (таблица 3).

Таблица 4 Значение n при котором достигается необходимая точность, т.е. D<0.001

Метод

Метод левых

прямоугольников

Метод правых

прямоугольников

Метод средних

прямоугольников

Метод Симпсона

n

160

160

80

20

В таблице 4 приведены значения интегралов, вычисленные различными методами при значении n=80, с прибавлением R  и без прибавления.

5. Выводы.

Наиболее точные результаты были получены методам Симпсона и методом средних прямоугольников. Значения, полученные данными методами, уже при n=10 имеют точность до 2-го знака после запятой, а при n=80 погрешность вообще равна 0 (таблица 2 и 3). Значения интеграла от функции 4*x^3*cosx+x^4*sinx, полученные методом правых прямоугольников при различных значениях n, имеют тоже небольшую погрешность, но по сравнению с методом средних прямоугольников и методом Симпсона все-таки имеют худшую погрешность. Таким образом, можно сделать вывод о целесообразности использования на практике формулы Симпсона, либо формулы средних прямоугольников, а при использовании формулы правых, или левых прямоугольников следует помнить о необходимости  задания большого числа отрезков n.    

Для расчета остаточного члена R был использован метод численного вычисления производной. После добавления R при вычислении значений интеграла, можно увидеть, что точность значений вычисленных методами левых и правых прямоугольников несколько снизилась. Значения, полученные методами Симпсона и средних прямоугольников при добавлении и без добавления R, отличаются слабо.   

Таким образом, можно сделать вывод о целесообразности использования на практике формулы Симпсона, либо формулы средних прямоугольников, а при использовании формулы правых, или левых прямоугольников следует помнить о необходимости  задания большого числа отрезков n. Кроме того, прежде чем использовать ту или иную формулу, следует проанализировать графический вид исходной аналитической зависимости, и на основе такого анализа выбрать наиболее подходящий метод вычисления интеграла.


 

А также другие работы, которые могут Вас заинтересовать

40883. Класифікація електромагнітних явищ 165 KB
  Рівняння магнітостатики: рівняння електростатики: . Рівняння магнітостатики має місце і там де . Звідси тобто звідки одержуємо рівняння Лапласа: з урахуванням заряду Пуасона: без.
40884. Конституційне право України як наука і навчальна дисципліна 253 KB
  €œКонституційне право України як наука і навчальна дисципліна План Конституційне право України як наука: поняття предмет система науки джерела науки основні функції науки. Конституційне право України як навчальна дисципліна: поняття структура курсу основна характеристика. Джерела конституційного права України як галузі права: поняття основні вимоги до джерел види джерел. Література Основна до всіх тем Конституція України від 28 червня 1996 р Відомості Верховної Ради України.
40885. Затухання у металі, скін – шар 67 KB
  В металі хвиля затухає як . Глибина на якій хвиля спадає в раз називається скін шаром. Ми не врахували те що існує також відбита хвиля у середовищі
40886. Конституція України - Основний Закон держави 180 KB
  Конституція України Основний Закон держави†План Поняття і загальна характеристика конституції як Основного Закону держави. Юридичні властивості й функції Конституції України. Основні етапи становлення Конституції України. Правова охорона Конституції України.
40887. Узагальнена плоска хвиля 284.5 KB
  Таким чином хвиля розповсюджується в багатьох напрямках: хвиля в напрямку Задача: Нехай хвиля падає під кутом до поверхні середовища знайти характеристики відбитої хвилі та заломленої.
40888. Основи конституційного ладу України 279.5 KB
  Механізм та основні функції Української держави. Метою цієї лекції є формування у студентів знань щодо основ конституційного ладу України який включає поняття державного і суспільного ладу; засвоєння ними понять “гарантії конституційного ладу Україн膓механізм держав膓принципи суспільного ладу†тощо. Проблеми та перспективи побудови правової держави в Україні Право України.: Інт держави і права ім.
40889. Рівняння Максвела для Т, ТЕ, ТМ хвиль 388 KB
  Т хвиля розповсюджується зі швидкістю світла . хвиля розповсюджується в напрямку хвиля існує там де є розвязок рівняння Лапласа електрика. Тому якщо існує електростатичне поле то може існувати і Т хвиля.
40890. Прямокутний хвильовід 139.5 KB
  Для хвилі завдяки граничним умовам на стінках , а по певній координаті (там, де індекс = 0 ) це поле однорідне, тоді буде всюди, тобто цієї хвилі не буде.
40891. Хвильовий опір хвильовода 164 KB
  Рівняння для Т, ТЕ, ТМ хвиль різні. Щоб звести їх до одного виду, використовуючи потенціали , , де - електрична скалярна функція, - магнітна скалярна функція. Якщо для Т – хвилі завжди, то , а перетворюється в нуль завдяки .