11573

Измерение коэффициента вязкости жидкости методом Стокса

Лабораторная работа

Физика

Лабораторная работа № 5 Измерение коэффициента вязкости жидкости методом Стокса Оборудование: Стеклянные цилиндрические сосуды с исследуемой жидкостью мелкие шарики измерительный микроскоп аналитические весы пикнометр секундомер масштабная линейка. ...

Русский

2013-04-08

146.5 KB

37 чел.

Лабораторная работа № 5

Измерение коэффициента вязкости жидкости методом Стокса

Оборудование: Стеклянные цилиндрические сосуды с исследуемой жидкостью,  мелкие шарики, измерительный микроскоп,  аналитические весы,  пикнометр, секундомер, масштабная линейка.

Общие представления

Всякое тело, движущееся в вязкой жидкости, испытывает действие силы сопротивления.  Для шара величина F этой силы  зависит от скорости движения u,  радиуса шара r, коэффициента вязкости  и плотности жидкости . Функциональная связь между данными величинами согласно известному в теории подобия методу размерностей может быть представлена как связь между независимыми безразмерными комбинациями  этих  величин.  Таких  комбинаций из пяти существенных для данного явления размерных величин можно составить две. Например, так называемый, коэффициент сопротивления [1]

,

где , и число Рейнольдса . Одна из этих комбинаций по указанному методу будет функцией от другой, а именно .

Таким образом, искомая сила выражается в виде

  (1)

Число  характеризует  соотношение сил инерции и сил вязкости, развиваемых в жидкости, обтекающей тело. При небольших числах  силы инерции малы и плотность  перестает играть существенную роль в явлении.  В этом случае она должна выпасть из формулы (1), что возможно лишь при . Теоретическое отыскание постоянной А  требует  интегрирования  сложных уравнений  движения вязкой жидкости,  что  было сделано Стоксом,  получившим .

Таким образом, при небольших числах Re формула (1) переходит в

.   (2)

Напротив, при больших числах  несущественной  величиной должна  была  бы стать вязкость  η,  которую следует исключить из формулы (1),  положив . Однако совсем пренебречь вязкостью в этом случае нельзя ввиду прилипания жидкости к поверхности тела. Но влияние вязкости будет распространяться лишь на тонкий пограничный слой толщиной порядка . Этот слой, однако, не покрывает целиком поверхности плохо обтекаемого тела, каковым является шар, а отрывается от нее в некотором месте. Местоположение отрыва пограничного слоя от поверхности шара и определяет значение C при больших числах . Сочетание разнородных  факторов,  действующих при обтекании шара, приводит к зависимости С от , которая изображена в логарифмическом масштабе на рис.  1 по результатам различных опытов [2]. Прямолинейный участок кривой,  лежащий при , соответствует формуле Стокса (2), которая, таким образом, достаточно точна в области .

Рис. 1. Коэффициент сопротивления шара в зависимости

от числа Рейнольдса.

Формула Стокса  получила  широкое применение в важных физических опытах: определение постоянной Больцмана методом Перрена, определение  заряда  электрона методом Милликена и др.  В данной работе она используется для измерения коэффициента вязкости жидкости методом падающего шарика [3]. Уравнение движения падающего в жидкости шарика при  имеет вид

,  (3)

где ,  - плотность и объём тела.  Решая это уравнение с начальным  условием  ,  нетрудно получить закон изменения скорости шарика

,  (4)

где u - установившаяся скорость движения, - характерное время установления скорости:

 , .  (5)

В качестве начальной следует взять скорость шарика  сразу после его входа в жидкость,  которая при падении с небольшой высоты  мала.  Если положить ,  то при  отличие v от u согласно (4) составит менее 2%,  и процесс  установления можно считать закончившимся. Путь s, пройденный шариком к этому моменту времени, составит величину

  (6)

Она дает допустимое расстояние между свободной поверхностью жидкости и меткой начала отсчета времени в эксперименте.  Разумеется, что для расчета пути установления s понадобится найденная из опыта величина u.

Для расчета коэффициента вязкости по опытным данным из первой формулы в (5) получим выражение

или ,  (7)

где  - просто вычисляемый коэффициент,  l - расстояние между метками, t время движения между ними.

Метод падающего шарика позволяет легко находить коэффициент сопротивления  C.  Для  его расчета подставим в формулу (1) вместо силы сопротивления F уравновешивающую её при установившемся падении шарика результирующую силу . Полученное выражение

 (8)

применимо для любых чисел . Его можно использовать для отыскания по графику на рис. 1 числа Рейнольдса в интервале , а затем рассчитать коэффициент вязкости η за пределами Стоксовой области.

Методические особенности эксперимента

В качестве меток в работе используются  резиновые  колечки, охватывающие стеклянные цилиндры с исследуемой жидкостью (технический глицерин, вода). Колечки можно перемещать вдоль цилиндров, располагая их на требуемой высоте: верхнее - ниже уровня жидкости настолько, чтобы к моменту его прохождения скорость шарика успевала установиться; нижнее - на возможно большем расстоянии от верхнего колечка, чтобы уменьшить ошибку измерения величин l и t. Фиксируя момент прохождения шариком метки, глаз наблюдателя должен располагаться в плоскости колечка,  которое  при этом будет сливаться в отрезок прямой линии.

Радиусы шариков r  определяются  с  помощью  измерительного микроскопа. Рекомендуется проверить сферичность шариков, измеряя их диаметр d по разным направлениям. При ее нарушении в качестве r надо брать половину среднего значения d.

Плотность жидкости  определяется с помощью пикнометра  или берется  из  справочника.  Плотность  шариков  находится по их массе и объёму или берется из таблиц, как, например, для свинцовых дробинок.

Описанная методика определения коэффициента вязкости основана  на  формуле  Стокса (2) и верна лишь при условии . Проверить последнее можно, даже не находя величины , а используя выражение (8) и график на рис. 1.

Однако, есть иной способ проверить приемлемость данной  методики. Нужно провести опыты с разными по радиусу шариками. Если рассчитанные по формуле (7) значения коэффициента  не обнаружат систематической зависимости от r, значит методика справедлива. В противном случае условия опыта надо поменять,  взяв другие шарики, или для нахождения  воспользоваться формулой (8) и графиком на рис. 1.

Разумеется, что всякий раз начальный участок  пути  (до верхней метки) должен быть достаточным для установления скорости шариков: .  Кроме того, во избежание влияния стенок сосуда на результаты опытов, необходимо бросать шарики вблизи осевой линии цилиндров.

Порядок выполнения работы

1. Отберите  2 или 3 группы тяжелых шариков (свинцовых дробинок) по 5 примерно одинаковых шариков в группе так,  чтобы шарики  из разных групп заметно отличались по диаметру.  Измерьте диаметры шариков.  Для каждой группы вычислите среднее  значение радиуса <r> и его среднеквадратичную ошибку .

2. Бросая в сосуд с техническим глицерином наибольшие шарики, измерьте время их падения между двумя метками.  По формуле (6) определите путь s установления скорости,  проверьте выполнение условия ,  при необходимости переместите верхнюю  метку.  После этого  побросайте  в жидкость остальные шарики.  Для каждой группы вычислите среднее время падения <t> и его среднеквадратичную ошибку .

3. Предварительно  рассчитав коэффициент B,  независящий от радиуса шариков, с помощью второй формулы в (7) для каждой группы шариков найдите среднее значение  коэффициента  вязкости жидкости. Его ошибку  вычислите по формуле

.  (9)

Проверьте, лежит ли расхождение в средних значениях , найденных для разных групп шариков, в пределах ошибки .

4. По найденному коэффициенту η и скорости u для каждой группы шариков рассчитайте число .  Проверьте выполнение условия .  Сделайте вывод относительно  достоверности  полученных значений коэффициента вязкости.

5. Используйте достоверное значение η для определения по графику на  рис.  2  массовой  доли  воды в техническом глицерине. Рассчитайте его плотность,  внесите поправку в значение η, найденное по формуле (7).

6. Проведите аналогичные опыты,  бросая самые легкие шарики в сосуд с водой. По формуле (8) найдите для каждого шарика коэффициент сопротивления C и число .  Полученные результаты представьте на графике зависимости  от .

Рис. 2. Коэффициент вязкости водного раствора глицерина в зависимости от массовой доли воды ζ в растворе при температуре 20 0С.

Дополнительные задания

1. Выведите формулы (5), интегрируя уравнение (3).

2. Получите выражение (6), интегрируя (4) и используя (5).

3. Получите  выражение (9) из общей формулы для ошибки косвенных измерений.

4. Пользуясь графиками на рис. 1, 2 и выражениями для величин C и ,  спланируйте эксперимент по выходу на возможно большие числа .

Литература

1. Сивухин Д. В. Общий курс физики. Т. 1. - М.: Наука, 1989. - §§ 98, 100, 101, 103.

2. Бэтчелор Дж. Введение в динамику жидкости. М.: Мир, 1973. - 5.11.

3. Руководство к лабораторным занятиям по физике. Под ред. Л. Л. Гольдина. М.: Наука, 1973. - Р 20.

5

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

21315. Понятие электронно-цифровой подписи 38 KB
  Эта проблема решается при помощи ЭЦП. ЭЦП связывает содержимое документа и идентификатор подписывающего лица делает невозможным изменение документа без нарушения подлинности подписи и подтверждает принадлежность ЭЦП автору электронного документа. Алгоритмы формирования и проверки ЭЦП реализованы в соответствии с требованиями ГОСТ Р 34. ЭЦП Sign представляет собой вычисляемую по стандартизованному алгоритму математическую функцию хэшфункцию от содержимого подписываемых данных data информации документа и закрытого секретного ключа...
21316. Юридические вопросы информационной безопасности 202.5 KB
  Независимо от способа совершения компьютерного преступления его исполнители должны быть наказаны и профессионалы работающие в сфере информационной безопасности должны уметь собирать информацию необходимую правоохранительным органам при задержании и вынесении приговора лицам несущим ответственность за это преступление. В новом законодательстве нашли отражение вопросы безопасности финансовой информации о клиентах и конфиденциальности сведений медицинского характера. Все эти проблемы требуют понимания и изучения профессионалами работающими...
21317. Состав текущих затрат, сформированный в зависимости от производственно-хозяйственных целей предприятия РГБ 195.5 KB
  Все затраты на производство и реализацию продукции (работ, услуг) должны быть документально обоснованы и иметь исключительно целевое назначение. Поскольку издержки производства и обращения являются главной составляющей при расчете прибыли организации, они участвуют в расчете налогооблагаемой прибыли...
21318. Категории атак на информацию 317.5 KB
  Существуют четыре основных категории атак: атаки доступа; атаки модификации; атаки на отказ в обслуживании; атаки на отказ от обязательств. Атаки такого рода наиболее разрушительны. Атаки нацеленные на захват информации хранящейся в электронном виде имеют одну интересную особенность: информация не похищается а копируется. Определение атаки доступа Атака доступа это попытка получения злоумышленником информации для просмотра которой у него нет разрешений.
21319. Предмет і завдання екології. Місце екології у системі інших наук. Значення екології для людської цивілізації. Глобальні проблеми екології 56 KB
  З розвитком виробництва очевидною стає обмеженість традиційно використовуваних природних багатств суші, тому в наш час перспективи розвитку виробництва все в більшій мірі звязують з використанням ресурсів Світового океану та космічного простору. Тому можна сказати, що в наш час екологічні проблеми поширилися навіть за межі Землі.
21320. Безопасность сетей 113.46 KB
  Обеспечение безопасности сетей представляет собой сумму мероприятий направленных на предотвращение несанкционированного доступа к ресурсам сети а именно: Безопасность входа в систему Безопасность доступа к файловой системе Безопасность передачи данных по сети Физическая защита оборудования и помещений. Следует отметить что доступ к сети вообще говоря не означает полного доступа ко всем ресурсам. Поэтому в решении этой задачи предусмотрены как средства аутентификации пользователя так и средства описывающие права доступа к различным...
21321. Виртуальная частная сеть. Концепция построения виртуальных частных сетей VPN 161.96 KB
  Концепция построения виртуальных частных сетей VPN. Виртуальной частной сетью Virtual Private Network – VPN называют объединение локальных сетей через открытую внешнюю среду глобальную сеть в единую корпоративную сеть обеспечивающую безопасное циркулирование данных. Объединение осуществляется на основе создания туннеля VPN в глобальной сети по которому передаются криптографически защищенные пакеты сообщений. Безопасность использования туннеля основана на взаимной аутентификации сторон криптографическом закрытии передаваемых данных...
21322. Жестовые методики ввода информации в интерактивных системах компьютерной визуализации 41 KB
  Трёхмерность, особенно в случае использования средств виртуальной реальности или “больших” экранов (то есть экранов, диагональ которых измеряется метрами, а количество пикселей – десятками миллионов) требует и новые средства ввода и связанные с ними новые пользовательские интерфейсы