11577

Минимизация функций алгебры логики и построение дискретных схем с использованием логического конвертера программы электронная лаборатория

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Минимизация функций алгебры логики и построение дискретных схем с использованием логического конвертера программы электронная лаборатория Цель работы. Научиться минимизировать функции алгебры логики ФАЛ получать совершенную дизъюнктивную нормальную форму С

Русский

2013-04-08

224.91 KB

24 чел.

Минимизация функций алгебры логики и построение дискретных схем с использованием логического конвертера программы «электронная лаборатория»

Цель работы. Научиться минимизировать функции алгебры логики (ФАЛ), получать совершенную дизъюнктивную нормальную форму (СДНФ) по таблице истинности (ТИ), строить дискретные схемы по заданным ФАЛ в различных базисах, а также изучить способы задания ФАЛ.

Краткие сведения из теории

Способы задания функций алгебры логики

Функцию f(X1, X2, …, Xn) называют функцией алгебры логики, если она, как и ее переменные, может принимать только два значения: логический 0 и логическую 1. Переменные ФАЛ сопоставляют со значениями сигналов на входах дискретного устройства (ДУ), а значения функции алгебры логики  со значениями сигналов на его выходах.

Реальные ДУ имеют конечное число входов, поэтому число переменных у соответствующих ФАЛ также конечно.

Существует ряд способов задания ФАЛ:

  1.  табличный;
  2.  графический;
  3.  координатный;
  4.  числовой;
  5.  аналитический.

Элементарные функции одной или двух переменных реализуются отдельными логическими элементами.

В устройствах автоматики, телемеханики и связи применяют большое количество ДУ, характеризующихся различными законами функционирования, т. е. реализующих различные ФАЛ. Важным этапом синтеза ДУ является определение способа соединения между собой логических  элементов, обеспечивающих работу устройства в соответствии с заданным законом функционирования. На этом этапе требуется представить ФАЛ устройства через функции выбранной полной системы (базиса).

Базисом называют полную систему функций алгебры логики.

Система функций является полной, если она включает в себя по крайней мере одну функцию, не сохраняющую 0, одну функцию, не сохраняющую 1, одну несамодвойственную, одну немонотонную и одну нелинейную функции (теорема Поста  Яблонского).

Свойством сохранения нуля функция f(X1, X2, …, Xn) обладает, если она на нулевом наборе аргументов равна нулю, т.е. f(0,0,…,0)=0.

Свойством сохранения единицы функция f(X1, X2, …, Xn) обладает, если она на единичном наборе аргументов равна единице, т. е. f(1, 1,…, 1) = 1.

Свойством самодвойственности обладает функция, у которой инвертирование всех аргументов приводит к инверсии значения функции, т.е. .

Свойством монотонности обладает функция, значение которой при любом возрастании набора не убывает, т. е.  ,

где .

Свойством линейности обладает функция, которая может быть представлена полиномом первой степени:

где a0, a1, …, an – коэффициенты, равные нулю или единице.

Минимальный базис состоит из такого набора функций, исключение из которого любой функции превращает этот набор в неполную систему функций. Наиболее удобным для представления в виде логического выражения функций алгебры логики является базис, содержащий конъюнкцию (умножение), дизъюнкцию (сложение) и инверсию (отрицание) (базис И-ИЛИ-НЕ). Этот базис называется основным. Минимальный базис включает в себя две функции И-НЕ (базис Шеффера) либо ИЛИ-НЕ (базис Пирса). Однако использование трех функций упрощает логическое описание, а в ряде случаев и построение дискретных устройств автоматики, телемеханики и связи.

Совершенная дизъюнктивная нормальная форма (СДНФ) представляет собой алгебраическое выражение, которое принимает значение, равное 1 на тех наборах переменных, на которых значение заданной функции равно 1.

Совершенная конъюнктивная нормальная форма (СКНФ) представляет собой алгебраическое выражение, которое принимает значение 0 на тех наборах переменных, на которых значение заданной функции равно 0.

Элементы управления логическим конвертером

Логический конвертер (рисунок 2.1) представляет собой мощное средство программы «Электронная лаборатория», позволяющее по заданной схеме дискретного устройства строить его таблицу истинности, по таблице истинности дискретного устройства получать его ФАЛ, минимизировать полученную ФАЛ, по полученной ФАЛ строить схемы в базисе И-ИЛИ-НЕ и базисе И-НЕ.

Недостатками логического конвертера (ЛК) являются: возможность анализа выходных значений всего одной функции при числе входных аргументов до восьми, а также отсутствие опции для построения схем в базисе ИЛИ-НЕ.

Для получения таблицы истинности для заданной схемы с помощью ЛК достаточно соединить соответствующие входы ЛК (поз. 2 на рисунке2.1) со входами анализируемой дискретной схемы (при этом окно ЛК должно быть свернуто в пиктограмму), а выход этой схемы соединить со входом анализа выходных значений OUT (поз. 3 на рисунке 2.1) и нажать кнопку, соответствующую позиции 5 на рисунке 2.1. В результате в окне конвертера будет высвечена полученная ТИ.

Самым старшим разрядом конвертера является разряд А, а самым младшим  разряд Н.

При задании формул логическое сложение задается символами «|» или «+», отрицание – символом «`». При умножении двух аргументов они пишутся друг за другом без каких-либо символов. Для того чтобы выполнить инверсию суммы двух аргументов, их необходимо предварительно взять в скобки.

Порядок выполнения работы

Индивидуальное задание:


Ответы на контрольные вопросы:

15. Если существует операция логического умножения двух и более элементов, операция «и» — (A&B), то для того, чтобы найти обратное от всего суждения ~(A&B), необходимо найти обратное от каждого элемента и объединить их операцией логического сложения, операцией «или» — (~A+~B). Закон работает аналогично в обратном направлении: ~(A+B) = (~A&~B)

Вывод:

в ходе лабораторной работы я научился минимизировать функции алгебры логики (ФАЛ), получать совершенную дизъюнктивную нормальную форму (СДНФ) по таблице истинности (ТИ), строить дискретные схемы по заданным ФАЛ в различных базисах, а также изучил способы задания ФАЛ.


 

А также другие работы, которые могут Вас заинтересовать

19538. Фильтры второго и высших порядков 452.79 KB
  1 Лекция 7. Фильтры второго и высших порядков Определение фильтра второго порядка Примером фильтра вторго порядка является фильтр . Рассматриваем только вещественный случай. Переходя к Z преобразованию получим: . Найдя корни многочлена в знаменателе пере
19539. Фильтры Баттеруорта 297.97 KB
  2 Лекция 8. Фильтры Баттеруорта Отыскание параметров фильтра В левой и правой частях в знаменателе находятся многочлены от переменной z. Найдем корни этих многочленов. Множество корней по построению инвариантно относительно замены . Для устойчивости фильтр...
19540. Осциллятор. FIR фильтры 500 KB
  3 Лекция 9. Осциллятор. FIR фильтры Полосовой фильтр на основе фильтра низких частот В предыдущей лекции было показано каким образом можно построить различные фильтры. Оказывается любой из таких фильтров можно получить на основе фильтра низких частот с помо...
19541. Квадратурный зеркальный фильтр 372.27 KB
  2 Лекция 10. Квадратурный зеркальный фильтр Проектирование FIR фильтра на основе аппроксимации Рассмотрим симметрический фильтр с передаточной функцией. 1 Пусть задана вещественная передаточная функция. Положим. В результате замены имеем взаимно од
19542. WaveLet- преобразования 322.83 KB
  2 Лекция 11. WaveLet преобразования WaveLetпреобразование является альтернативой преобразованию Фурье в тех случаях когда сигнал не носит периодического характера. Различают непрерывное и дискретное WaveLetпреобразования. Предполагается что все интегралы рассмот...
19543. Wavelet фильтрация 356.85 KB
  1 Лекция 12 Wavelet фильтрация Детализация сигнала Введем обозначение: для любой функции . Положим . Предложение. Если выполнено условие ортогональности то при фиксированном функции образуют ортонормированную систему. Доказательство. Имеем при . Нор...
19544. Шум от квантования сигнала 585.83 KB
  2 Лекция 13. Шум от квантования сигнала. Multiresolution переменная разрешающая способность Пусть справедливо дополнительное предположение: . Из включения вытекает представление где ортогональное дополнение пространства до пространства . При сделанных пре
19545. Быстрые схемы дискретного преобразования Фурье 515.42 KB
  2 Лекция 14. Быстрые схемы дискретного преобразования Фурье. Обычные формулы для вычисления ДПФ требуют большого количества умножений: где число точек в ДПФ. Существуют приемы позволяющие уменьшить это количество. Они называются быстрыми схемами БПФ. Пр
19546. Свертка последовательностей и ее вычисление 174.65 KB
  2 Лекция 15.Свертка последовательностей и ее вычисление Сдвиг последовательности Пусть имеется последовательность . Мы можем превратить ее в бесконечную последовательность положив . Выберем целое и определим . Найдем связь между преобразованиями Фурье э