11579

Создание логической модели данных с помощью Allfusion ERwin Data Modeler

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа 5 по дисциплине: Проектирование и архитектура программного проектирования На тему: Создание логической модели данных с помощью Allfusion ERwin Data Modeler Цель работы: Развитие логической модели. Ход работы: Как было указано выше связи определяют

Русский

2013-04-08

106.68 KB

20 чел.

Лабораторная работа 5

по дисциплине:

Проектирование и архитектура программного проектирования

На тему:

«Создание логической модели данных с помощью Allfusion ERwin Data Modeler»

Цель работы: Развитие логической модели.

Ход работы: Как было указано выше, связи определяют, является ли сущность независимой или зависимой. Различают несколько типов зависимых сущностей.

Характеристическая - зависимая дочерняя сущность, которая связана только с одной родительской и по смыслу хранит информацию о характеристиках родительской сущности.

Ассоциативная - сущность, связанная с несколькими родительскими сущностями. Такая сущность содержит информацию о связях сущностей. Примером ассоциативной сущности является Заказ.

Именующая - частный случай ассоциативной сущности, не имеющей собственных атрибутов (только атрибуты родительских сущностей, мигрировавших в качестве внешнего ключа).

Категориальная - дочерняя сущность в иерархии наследования.

Доопределить недостающие сущности, атрибуты и связи в модели, построенной на предыдущем занятии. Привести модель к третьей нормальной форме.


 

А также другие работы, которые могут Вас заинтересовать

22909. Властивості визначників 96.5 KB
  Будемо формулювати і доводити властивості лише для рядків визначника але за попереднім зауваженням вони мають місце і для стовпчиків визначника. Нульовим рядком називається рядок визначника всі елементи якого дорівнюють 0. Нехай й рядок визначника Δ нульовий. Якщо в визначнику переставляються місцями два рядки то змінюється лише знак визначника.
22910. Теорема про розклад визначника за елементами рядка або стовпчика 67 KB
  Доповнюючим мінором елемента aij називається визначник Mij який одержуються викресленням з визначника Δ i го рядка та j го стовпчика. Ця теорема дозволяє звести обчислення визначника n го порядку до обчислення визначників порядку n1. Фіксуємо iй рядок визначника Δ та доведемо що всі добутки що складають доданок aijAij входять у визначник Δ причому з таким самим знаком як і у доданку aijAij.
22911. Визначник Вандермонда 32.5 KB
  Визначником Вандермонда n го порядку називається визначник. Доведення проведемо індукцією за порядком n визначника При n=2 Припустимо що твердження виконується для визначника Вандкрмонда Δn1 порядку n1 і знайдемо визначник Δn. Як відомо визначник не змінюється якщо від деякого рядка відняти інший рядок домножений на число. Тому у визначника Δn спочатку від останнього рядка віднімаємо рядок з номером n1 домножений на a1.
22912. Системи лінійних рівнянь 22 KB
  Система лінійних рівнянь називається сумісною якщо вона має принаймні один розвязок. Система лінійних рівнянь називається несумісною якщо вона не має розвязків. Сумісна система лінійних рівнянь називається визначеною якщо вона має єдиний розвязок.
22913. ТЕОРЕМА КРАМЕРА 43.5 KB
  Αn1x1αn2x2αnnxn=βn Складемо визначник з коефіцієнтів при змінних α11 α12 α1n Δ= α21 α22 α2n αn1 αn2 αnn Визначник Δ називається головним визначником системи лінійних рівнянь 1. Якщо головний визначник Δ квадратної системи лінійних рівнянь 1 не дорівнює нулю то система має єдиний розвязок який знаходиться за правилом: 2 Формули 2називаються формулами Крамера. Домножимо перше рівняння системи 1 на A11 друге рівняння на А21 і продовжуючи так далі nе рівняння системи домножимо на Аn1. Отримаємо рівняння яке...
22914. Обчислення рангу матриці 20.5 KB
  Основними методами обчислення рангу матриці є методи оточення мінорів теоретичний і метод елементарних перетворень практичний. Методи оточення мінорів полягає в тому що в ненульовій матриці шукається базисний мінор. Тоді ранг матриці дорівнює порядку базисного мінору.
22915. Теорія систем лінійних рівнянь 24 KB
  Основною матрицею системи 1 називаються матриці порядку m x n. Ранг основної матриці системи A називається рангом самої системи рівнянь 1. Розміреною матрицею системи рівнянь 1 називається матриця порядку mxn1.
22916. Теорема Кронекера – Капелі (критерій сумісної системи лінійних рівнянь) 46 KB
  Припустимо що система сумісна і числа λ1λ2λn утворюють розвязок системи. Вертикальний ранг основної матриці системи дорівнює рангу системи векторів a1a2an вертикальний ранг розширеної матриці співпадає з рангом системи векторів a1a2anb. Оскільки вектор b лінійно виражається через a1a2an за теоремою 2 про ранг ранги системи векторів a1a2an і a1a2anb співпадають.
22917. Розв’язки системи лінійних рівнянь 50 KB
  Оскільки система сумісна ранги матриці A і рівні і дорівнюють r. Система переписується таким чином: Всі розвязки системи можна одержати таким чином. Одержується система лінійних рівнянь відносно базисних змінних x1x2xr.