11590

Исследование температурной зависимости сопротивления металла и полупроводника

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

ЛАБОРАТОРНАЯ РАБОТА № 1 Исследование температурной зависимости сопротивления металла и полупроводника. Цель работы: экспериментально проверить основной закон динамики вращательного движения. Построить график зависимости углового ускорения от вращающего моме...

Русский

2013-04-10

185.5 KB

2 чел.

ЛАБОРАТОРНАЯ РАБОТА № 1

Исследование температурной зависимости

сопротивления металла и полупроводника.

Цель работы: экспериментально проверить основной закон динамики вращательного  движения. Построить график зависимости углового ускорения от вращающего момента

силы.

Приборы и принадлежности: маятник Обербека, набор грузов с различными массами, нить, миллисекундомер.

ХОД РАБОТЫ:

1.Проведем расчеты при малом радиусе r1 шкива:

1.1.Занесем в таблицу 5 измерений малого радиуса шкива и среднее арифметическое величины r1 вычислим по формуле:

<r1>=,<r1>=0,02246(м).

1.2. Занесем в таблицу 5 измерений высоты падения груза и среднее арифметическое величины h вычислим по формуле:

h, м

1

0,428

2

0,426

3

0,429

4

0,424

5

0,426

1.3.Пять разных  измеренных величин t1  занесем в таблицу. Вычислим среднее арифметическое времени t опускания груза из верхней точки в нижнюю по формуле:

t1, c

(ti-<t1>)2, c2

1

6,988

0,0267

2

6,7

0,0155

3

6,75

0,0056

4

6,68

0,0209

5

7,005

0,0325

Масса груза m1 равна 0, 1127 кг, а высота падения груза h равна 0, 4266(м), тогда вычислим ср. арифметическое момента инерции<I1> по формуле:

<Ii>=,    <I1>0,0303571 (кг м2)

где

h-высота падения груза,

<t>-время падения груза,

<r>-малый радиус шкива;

 i-номер соответствующего измерения;

Вычислим ср. арифметическое вращающего момента силы и углового ускорения по формулам:

<>= и <Mi>=, тогда

<>=0,8156178 (м2/c2), <M1>=0,0247598 (Нм2)

1.4. Пять разных  измеренных величин t2 занесем в таблицу. Вычислим среднее арифметическое времени t2 опускания груза из верхней точки в нижнюю по формуле:

t2, c

1

5,362

2

5,281

3

5,111

4

5,398

5

5,508

При массе груза m2 равной m1+0, 0574=0,1701 (кг) вычислим ср. арифметическое момента инерции <I2> по вышеприведенной формуле:

<I2>=0,0279349(кг м2)

Вычислим ср. арифметическое вращающего момента силы и углового ускорения:

1,3361672 (м2/c2), <M2>=0,0373257 (Нм2)

1.5.Пять разных  измеренных величин t3 занесем в таблицу. Вычислим среднее арифметическое времени t3 опускания груза из верхней точки в нижнюю по формуле:

t3, c

1

4,625

2

4,638

3

4,564

4

4,502

5

4,617

При массе груза m3 равной m1+2+0, 0571=0,2272 (кг) вычислим ср. арифметическое момента инерции <I3> по вышеприведенной формуле:

<I3>=0,0276107(кг м2)

Вычислим ср. арифметическое вращающей силы и углового ускорения:

1,8037117 (м2/c2), <M3>=0,0498018 (Hм2)

1.6.Построим график зависимости углового ускорения от вращающего момента

силы(:

2.Проведем расчеты при большем радиусе r2 шкива:

2.1.Занесем в таблицу 5 измерений большего радиуса шкива и среднее арифметическое величины r2 вычислим по формуле:

<r2>=,

<r2>=0, 0436(м).

2.2.Пять разных  измеренных величин t4  занесем в таблицу. Вычислим среднее арифметическое времени t опускания груза из верхней точки в нижнюю по формуле:

t4, c

1

3,752

2

3,606

3

3,597

4

3,685

5

3,587

Масса груза m1 равна 0, 1127 кг, а высота падения груза h равна 0, 4266(м), тогда вычислим ср. арифметическое момента инерции<I4> по уже выше приведенной формуле:

<I4>0,0324869 (кг м2)

Вычислим ср. арифметическое вращающего момента силы и углового ускорения:

<>=1,4725633 (м2/c2), <M4>= 0,047839 (Нм2)

2.3. Пять разных  измеренных величин t5 занесем в таблицу. Вычислим среднее арифметическое времени t5 опускания груза из верхней точки в нижнюю по формуле:

t5, c

1

2,937

2

2,792

3

2,847

4

2,993

5

2,893

При массе груза m2 равной m1+0, 0574=0,1701 (кг) вычислим ср. арифметическое момента инерции <I5> по вышеприведенной формуле:

<I5>=0,0307486 (кг м2)

Вычислим ср. арифметическое вращающего момента силы и углового ускорения :

2,3390939 (м2/c2), <M5>=0,071924 (Нм2)

2.4.Пять разных  измеренных величин t6 занесем в таблицу. Вычислим среднее арифметическое времени t6 опускания груза из верхней точки в нижнюю по формуле:

t6, c

1

2,475

2

2,550

3

2,527

4

2,464

5

2,576

При массе груза m3 равной m1+2+0, 0571=0,2272 (кг) вычислим ср. арифметическое момента инерции <I6> по вышеприведенной формуле:

<I6>=0,0310315 (кг м2)

Вычислим ср. арифметическое вращающей силы и углового ускорения:

3,0854246 (м2/c2), <M6>=0,0957454 (Hм2)

2.5.Построим график зависимости углового ускорения от вращающего момента

силы(:

3.Проверим основной закон динамики вращательного движения двумя способами:

1-ый способ. В ходе работы мы меняли массу груза m и радиус шкива r при неизменных положениях грузов m0, расположенных на крестовине. Поэтому мы можем убедиться в постоянстве момента инерции:

const,

где

среднее арифметическое момента вращающей силы при i-ом радиусе среди всех 3-х средних моментов;

среднее арифметическое углового ускорения при i-ом радиусе среди всех 3-х средних угловых ускорений.

Итак,

0, 037295766 (Нм2), 1, 3184989 (м2/c2)

0, 02828653 (кг м2)

0, 071836133 (Нм2), 2, 299027267 (м2/c2)

0, 031246316 (кг м2)

В итоге мы получаем, что

I0, 03125 (кг м2)

Следует добавить, что знак “” означает грубое округление, ввиду того, что результаты несколько не сходятся из-за присутствия в работе погрешностей.

2-ой способ. Мы меняли положение грузов m0 на стержнях крестовины и оставляли неизменным вращающий момент сил, т.е. проверили следующее соотношение:

M=const,

где

среднее арифметическое углового ускорения при i-ом радиусе среди всех 3-х средних угловых ускорений;

среднее арифметическое момента инерции при i-ом радиусе среди всех 3-х средних моментов инерции.

Итак,

0, 028634233 (кг м2);1, 3184989 (м2/c2);

0, 037754204 (Нм2).

0, 031422333 (кг м2);2, 2990273 (м2/c2);

0, 072240798 (Нм2).

В итоге мы получаем, что

0,0722401(Нм2)

Здесь знак “” означает очень грубое округление из-за неточности выполнения данного этапа в нашей работе.

4. Вычислим погрешности, которые присутствовали в нашей работе по следующей формуле:

,

где

-приборные погрешности;

случайная погрешность;

Приборная погрешность вычисляется по следующей формуле:

,

где

коэффициент Стъюдента для бесконечно большого числа измерений;

цена деления прибора;

2

тогда

0,000667 (м);

0,000667 (кг)

Случайная погрешность вычисляется по следующей формуле:

где

 n-число измерений;

значение коэффициента Стъюдента для произвольного n;

2, 8.

тогда

=0, 19922 (с)

Вычислим абсолютную погрешность, если <I>=0, 0303571 (кгм2):

0, 00253506 (кгм2),

Запишем результата в виде доверительного интервала:

(кгм2)

Вывод о проделанной работе:

мы проверили основной закон динамики вращательного движения двумя способами. Оказалось (а так оно и должно быть), что при меняющихся угловых ускорениях и вращающих моментов сил остается постоянным момент инерции и при меняющихся моментах инерции и угловых ускорений остается постоянным вращающий момент сил. Но в нашей работе присутствовали ощутимые по своей величине погрешности, поэтому результат проверки оказался не достаточно “красивым”.


 

А также другие работы, которые могут Вас заинтересовать

23788. Умножение и деление десятичных дробей на 10, 100, 1000 и т.д. 101.5 KB
  Основные цели: 1 формировать способность выводить правила на примере правила умножения и деления десятичных дробей на 10 100 1000 тренировать умение применять новое знание на практике точно и последовательно выстраивать рассуждения переходя от частного к общему оценивать собственную деятельность на уроке; 2 сформировать умение умножать и делить десятичные дроби на 10 100 1000 и т. Демонстрационный материал: 1 план работы по теме: ДРОБИ ОБЫКНОВЕННЫЕ ДЕСЯТИЧНЫЕ ЗАПИСЬ ЗАПИСЬ ПЕРЕВОД СРАВНЕНИЕ СРАВНЕНИЕ СЛОЖЕНИЕ И...
23789. Умножение и деление десятичных дробей на 10, 100, 1000 и т.д. 2.69 MB
  Мотивация к учебной деятельности Цель: 1 включение учащихся в учебную деятельность; 2 организовать деятельность учащихся по установке тематических рамок: действия с десятичными дробями. Цель: 1 организовать актуализацию изученных способов действий достаточных для построения нового знания: запись и чтение десятичных дробей представление десятичных дробей в виде обыкновенных дробей критерий перевода обыкновенных дробей в десятичные дроби построение моделей умножение и деление дробей и смешанных чисел на натуральные числа; 2...
23790. ИССЛЕДОВАНИЕ УПРАВЛЯЕМОЙ ДИНАМИЧЕСКОЙ СИСТЕМЫ 561.5 KB
  Целью данного курсового проекта является исследование поведения управляемой динамической системы, описанной системой дифференциальных уравнений. На основе исходных данных мы находим равновесное состояние системы, вид линеаризованной системы
23791. Разработки и внедрения стандартов второго поколения – повышение качества образования 317 KB
  Кроме того при прохождении учащимися описанных шагов технологии деятельностного метода обеспечивается системный тренинг полного перечня деятельностных способностей выделенных на основе анализа Онтосхемы мира деятельности. Реализация технологии деятельностного метода в практическом преподавании обеспечивается следующей системой дидактических принципов: 1 Принцип деятельности заключается в том что ученик получая знания не в готовом виде а добывая их сам осознает при этом содержание и формы своей учебной деятельности понимает и...
23792. Тяговые расчеты 354.5 KB
  Целью тяговых расчетов является изучение сил, действующих на поезд, законов его движения, методов определения скоростей движения, времени хода и других показателей, влияющих на оценку и выбор проектного решения.
23793. Простые и составные числа, урок 41.5 KB
  Определите простым или составным является число Выявление причин затруднений и постановка учебной цели. Какую цель мы поставим перед собой сегодня на уроке Найти методы определения каким является число. Число составное т. по определению составное число это число у которого больше двух делителей.
23794. Методы передачи данных по линиям связи 158.5 KB
  При передаче данных по линиям связи применяются два основных типа кодирования – на основе синусоидального сигнала и на основе последовательности прямоугольных импульсов.
23796. Декларация прав человека 49 KB
  Бременские музыканты нарушалось право на свободу передвижения право на труд право на личную неприкосновенность право на защиту себя в суде право на участие в мирных собраниях право на свободу. Колобок нарушалось право на личную неприкосновенность право на жизнь право на свободу мирных собраний право на порядок в стране право на свободу убеждений право на гражданство право на имущество Кот и лиса нарушалось право на свободу передвижения право на труд право на личную неприкосновенность право на защиту себя в...