11605

МЕТОД РЕШАЮЩИХ МАТРИЦ Г.С.ПОСПЕЛОВА

Лабораторная работа

Экономическая теория и математическое моделирование

Лабораторная работа №1 4 часа МЕТОД РЕШАЮЩИХ МАТРИЦ Г.С.ПОСПЕЛОВА Цель работы: изучение метода организации сложных экспертиз предложенного Г.С.Поспеловым. Задачи работы: Освоить предлагаемый метод. Научиться решать задачи используя электронны

Русский

2013-04-10

121.5 KB

83 чел.

Лабораторная работа №1

4 часа

МЕТОД РЕШАЮЩИХ МАТРИЦ Г.С.ПОСПЕЛОВА

Цель работы: изучение метода организации сложных экспертиз, предложенного Г.С.Поспеловым.

Задачи работы:

  1.  Освоить предлагаемый метод.
  2.  Научиться решать задачи, используя электронные таблицы Excel.

Обеспечивающие средства:

  1.  Персональный компьютер.
  2.  Табличный процессор Excel.
  3.  Текстовый редактор Word.

Указания к работе:

Формулировка задачи:

В качестве метода организации сложных экспертиз можно использовать метод решающих матриц, идея которого была предложена Г.С.Поспеловым как средство стратифицированного представления проблемы с большой неопределенностью с разбивкой на подпроблемы и пошагового получения оценок.

Например, при создании сложных производственных комплексов, реализации крупных проектов и организации решения других аналогичных проблем нужно определить влияние на проектируемый объект фундаментальных научно-исследовательских работ, чтобы запланировать эти работы, предусмотреть их финансирование и распределить средства между ними.

Получить от экспертов объективные и достоверные оценки влияния фундаментальных НИР на проектирование сложного объекта практически невозможно.

Для того, чтобы облегчить экспертам эту задачу, можно вначале спросить их. какие направления (области) исследований могут быть полезны для создания комплекса (или какие подпроблемы нужно решить для реализации всей проблемы) и попросить определить относительные веса этих направлений (подпроблем) а1, . . , ana. Затем - составить план опытно-конструкторских работ для получения необходимых результатов по названным направлениям и оценить их вклад b1, …, bnb. Далее нужно определить перечень прикладных научных исследований и их относительные веса g1, . . , gng. И, наконец, оценки влияния фундаментальных НИР на прикладные d1, .. . , dnd.

Таким образом, область работы экспертов представляется в виде нескольких уровней: направления (подпроблемы) ОКР прикладные НИР фундаментальные НИР (рис. 1).

Рис. 1

Относительные веса    по всем     уровням   должны   быть   нормированы. В методе решающих матриц для удобства опроса экспертов относительные веса определяются не в долях единицы, а в процентах, и нормируются по отношению к 100:  

Непосредственно экспертами оцениваются только веса направлений   (подпроблем), остальные относительные веса вычисляются. Эксперты оценивают  вклад каждой альтернативы (ОКР, НИР) в реализацию элементов более высокого уровня, непосредственно предшествующего уровню данной альтернативы. Так, вклад ОКР в реализацию направления (подпроблемы) оценивается некоторой величиной рij. Естественно, для каждой ОКР относительные веса также нормированы: .

Таким образом, каждая строка решающей матрицы характеризует относительный вклад i-й ОКР н реализацию каждой из j-х подпроблем.

Оценив предварительно а1, ..., ana и используя решающую матрицу || pij ||  можно получить относительные веса ОКР:

     (1)

Аналогично, зная bi и оценив || рki || , можно получить относительные веса прикладных НИР gk, а затем — и фундаментальных НИР dy.

В результате при использовании метода решающих матриц оценка относительной важности сложной альтернативы сводится к последовательности оценок более частных альтернатив, что обеспечивает их большую достоверность при прочих равных условиях.

Иными словами, большая неопределенность, имевшая место в начале решения задачи, как бы разделена на более "мелкие", лучше поддающиеся оценке, в соответствии с одной из основных идей системного анализа.

Метод решающих матриц применялся для реализации крупных дорогостоящих проектов (космос, оборона, фундаментальные научные исследования и т. п.), при создании, реконструкции, конверсии предприятий или научно-исследовательских организаций, инвестируемых государством, т. е. в ситуациях, для которых повышаются требования к тщательности анализа факторов, влияющих на принятие решений.

Используя метод решающих матриц и сформировав многоуровневую структуру факторов, влияющих на создание и функционирование предприятий (организаций), можно провести более тщательный анализ вклада конкретных факторов нижнего уровня этой структуры (многие из которых могут быть количественно оценены с помощью детерминированных или вероятностных характеристик) на процесс проектирования и функционирования предприятия.

Требуется:

  1.  Составить математическую модель задачи.
  2.  Решить полученную задачу на листе Excel. При этом предусмотреть проверку выполнения условий нормировки на каждом шаге для проверки корректности вводимых данных.
  3.  Выполнить ряд расчетов, меняя значения ai и распределения оценок Pij.
  4.  Сделать выводы о влиянии изменения указанных выше величин на результаты расчетов.

Выполнение работы:

  1.  Ввести исходные данные задачи: величины aj и матрицу Pij для связи первых двух уровней.
  2.  Вычислить величины bi по формуле (1). Выполнить их нормировку для выполнения условия  .
  3.  Ввести матрицу Pij для связи второго и третьего уровней. Вычислить величины gk. Выполнить их нормировку.
  4.   Ввести матрицу Pij для связи третьего и четвертого уровней. Вычислить величины dy. Выполнить их нормировку.
  5.  Вывести окончательны результаты в одно место на листе.
  6.  Выполнить ряд расчетов, меняя значения ai и распределения оценок Pij на разных уровнях. Данные и выводы записать в отчет, подготовленный в текстовом редакторе Word. .

Требования к отчету:

Отчет в письменной форме не предусмотрен. Готовится отчет в текстовом редакторе Word.. Выполненная на компьютере лабораторная работа сдается преподавателю.

Контрольные вопросы:

  1.  Где применяется метод решающих матриц.
  2.  Как проявляется сглаживающее влияние последовательного умножения матриц.
  3.  Что можно сказать о влиянии изменений матриц Pij на разных уровнях.

Список рекомендованной литературы

  1.  Волкова В.Н., Денисов А.А. Методы организации сложных экспертиз: Учебное пособие и методические указания к лабораторным работам по курсам «Теория систем и системный анализ» и «Социология». —СПб.: Издательство СПбГТУ, 1998. — 48 с.
  2.  

 

А также другие работы, которые могут Вас заинтересовать

27381. Действия с величинами 23.83 KB
  Формирование у учащихся представлений о числе и о десятичной системе счисления тесно связано с изучением величин. В начальных классах у учащихся имеются некоторые интуитивные представления о величинах и об их измерении. Измерение заключается в сравнении данной величины с некоторой величиной того же рода принятой за единицу.
27382. ЗУНы для вычисления в пределах 100 (сложение и вычитание) 22.28 KB
  Остальные случаи вычислений над числами большими 100 относятся к письменным вычислениям. Рассмотрим методические особенности формирования умений складывать и вычитать числа в пределах 100 которые нашли отражение в учебниках М1М и М2М Моро. Овладение вычислительными приемами предполагает усвоение: нумерации чисел в пределах 100 разрядного состава двузначного числа табличных случаев сложения вычитания и свойств сложения и вычитания; прибавления числа к сумме вычитания числа из суммы прибавления суммы к числу вычитания...
27383. Алгоритмы: 1. Письменного сложения и вычитания 2. Письменного умножения 3. Письменного деления 20.18 KB
  Письменного деления ЗУНы для сложения и вычитания: Нумерация многозначных чисел Разрядный состав многозначных чисел Десятичный состав числа Навык сложения и вычитания чисел в пределах 20 Знание переместительного и сочетательного закона сложения Как и другие алгоритмы письменного вычисления в и рассматриваются поэтапно: Актуализация ЗУН подготовка к изучению алгоритма подготовка и изучение алгоритма Введение самого алгоритма Усвоение алгоритма Продуктивное повторение новой темы включать новые знания в систему имеющихся Основная...
27384. Функции текстовых задач 17.29 KB
  Любое математическое задание можно рассматривать как задачу выделив в нем условие т. Функции текстовых задач. Ведущие методисты отмечают что решение текстовых задач в начальной школе преследует двойную цель: с одной стороны научить решать текстовые задачи различных видов с другой стороны сами текстовые задачи выступают как средство обучения воспитания и развития школьников.
27385. Математическое развитие младших школьников невозможно без приобщения их к геометрии 19.38 KB
  Эта особенность находит свое выражение и в начальных классах где формирование представлений о геометрических фигурах связано с изучением таких величин как длина и площадь. Основой формирования у детей представлений о геометрических фигурах является способность их к восприятию формы. В развитии представлений о геометрических фигурах учащиеся начальных классов проходят два этапа. Формируя у них целостное представление о геометрических фигурах следует идти от реальных предметов к их моделям геометрическим фигурам и наоборот: от...
27386. Различные подходы к построению урока математики 19.44 KB
  Основные этапы подготовки учителя к уроку математики: общий способ деятельности связанный с планированием урока можно представить в виде следующей последовательности вопросов. Какова функция учебных заданий данного урока обучающая развивающая контролирующая Какие знания умения навыки и приемы умственных действий формируются в процессе их выполнения 5. Какова дидактическая цель данного урока 6.
27387. Анализ и синтез 18.71 KB
  Способность к аналитикосинтетической деятельности находит свое выражение не только в умении выделять элементы того или иного объекта его различные признаки или соединять элементы в единое целое но и в умении включать их в новые связи увидеть их новые функции. Так как работу по формированию у детей логического приема сравнения лучше начать с первых уроков математики то в качестве объектов можно сначала использовать предметы или рисунки с изображением предметов хорошо им знакомых в которых они могут выделить те или иные признаки опираясь...
27388. Методика преподавания русского языка 36 KB
  Как и любая другая наука методика русского языка имеет свой предмет. Методика русского языка призвана изучить закономерности формирования умений и навыков в области языка усвоения систем научных понятий по грамматике и по другим разделам науки о языке. Методика русского языка изучает уровни знаний умений и навыков учащихся на разных ступенях обучения выясняет причины успехов или неудач в обучении исследует типичные ошибки речевые орфографические и пр.
27389. Место курса «Русский язык» в учебном плане 76 KB
  Это обусловлено тем что русский язык является государственным языком Российской Федерации родным языком русского народа средством межнационального общения. Осознание единства звукового состава слова и его значения. Установление числа и последовательности звуков в слове. Сопоставление слов различающихся одним или несколькими звуками.