11658

ИССЛЕДОВАНИЕ АМПЛИТУДНОЙ МОДУЛЯЦИИ И ДЕТЕКТИРОВАНИЯ АМПЛИТУДНО-МОДУЛИРОВАННЫХ КОЛЕБАНИЙ

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лабораторная работа №5 ИССЛЕДОВАНИЕ АМПЛИТУДНОЙ МОДУЛЯЦИИ И ДЕТЕКТИРОВАНИЯ АМПЛИТУДНОМОДУЛИРОВАННЫХ КОЛЕБАНИЙ Цель работы: ознакомиться с принципами действия и основными параметрами амплитудной модуляции и детектирования амплитудномодулированных колебани

Русский

2013-04-10

84.5 KB

74 чел.

Лабораторная работа №5

ИССЛЕДОВАНИЕ АМПЛИТУДНОЙ МОДУЛЯЦИИ И ДЕТЕКТИРОВАНИЯ АМПЛИТУДНО-МОДУЛИРОВАННЫХ КОЛЕБАНИЙ

Цель работы: ознакомиться с принципами действия и основными параметрами амплитудной модуляции и детектирования амплитудно-модулированных колебаний.

 Приборы и принадлежности:

1. Милливольтметр В3-38.

2. Осциллограф типа С1-67, С1-68, С1-65  или аналогичный.

3. Генератор  сигналов низкочастотный типа Г3-112, Г3-33, Л-30 или аналогичный.

4. Генератор сигналов высокочастотный типа Г4-18А, Г4-2 или аналогичный.

5. Лабораторный модуль.

6. Встроенный источник питания.

5.1. Сведения из теории

Модуляцией колебаний называется медленное по сравнению с периодом колебаний изменение амплитуды, фазы или частоты колебаний по определенному закону.

Радиочастотное колебание характеризуется амплитудой, частотой и фазой. Соответственно различают три основных вида модуляции: амплитудную, частотную и фазовую.

5.1.1. Амплитудная модуляция

При амплитудной модуляции изменяется только амплитуда колебаний, а фаза и частота остаются неизменными. В случае модуляции косинусоидальным сигналом модулированное колебание  имеет вид:

,                              (5.1)

где  – амплитуда несущего колебания, m  – коэффициент модуляции,  – частота модулирующего колебания,  – частота несущего колебания.

Амплитудно-модулированное радиочастотное колебание показано на рис. 5.1.

Максимальное и минимальное значение амплитуды:

.

 

Коэффициент амплитудной модуляции есть отношение разности максимальной и минимальной амплитуд к их сумме:

.

При модуляции гармоническим колебанием результирующее радиочастотное модулированное колебание можно представить в виде суммы колебаний:

Таким образом, спектр радиочастотного колебания при амплитудной модуляции гармоническим колебанием состоит из трех составляющих: нижней боковой, несущей и верхней боковой.

5.1.2. Методы осуществления амплитудной модуляции

Из выражения (5.1) видно, что для осуществления амплитудной модуляции необходимо перемножение несущего и модулирующего колебаний. Это можно сделать с помощью как линейных, так и нелинейных преобразований.

 Базовая модуляция. На рис. 5.2 показана схема, в которой  осуществлена базовая модуляция. Из схемы следует, что напряжение на базе является суммой модулируемого и модулирующего колебаний. Рис. 5.3 объясняет принцип базовой модуляции с помощью идеализированной входной характеристики транзистора.

 Эмиттерная модуляция. На рис. 5.4 показана схема эмиттерного модулятора. Дифференциальный усилитель на транзисторах VT1 и VT2 включен по схеме фазоинвертора. Генератор стабильного тока создает стабильный ток, значение которого пропорционально входному низкочастотному напряжению. При малых входных высокочастотных и низкочастотных напряжениях амплитуда выходного напряжения

,

где  и  – коэффициенты пропорциональности,  – амплитуда входного высокочастотного напряжения, F(t) – функция, характеризующая временную зависимость модулирующего напряжения.

Как базовая, так и эмиттерная модуляции осуществляются в предварительных каскадах передающих устройств. В последующих каскадах, являющихся генераторами с внешним возбуждением, модулированные колебания усиливаются. Эти каскады работают в режиме В или С (угол отсечки меньше 90°).

5.1.3. Детектирование

Детектированием называется процесс выделения модулирующего сигнала из модулированного высокочастотного колебания.

Схемы, с помощью которых осуществляется детектирование, применяются и в случае, когда высокочастотные колебания не являются модулированными. Поэтому часто под детектированием понимают процесс выделения тех или иных параметров высокочастотного колебания.

Схема детектора на полупроводниковом диоде показана на рис. 5.6. Особенностью полупроводникового диода является наличие заметного обратного тока при отрицательном напряжении на диоде, в отличие от лампового.

Зависимость напряжения или тока на выходе детектора от амплитуды входного сигнала называют детекторной характеристикой. Детекторная характеристика должна быть линейной, а угловой коэффициент ее не должен зависеть от частоты модуляции  и частоты несущего колебания  (рис. 5.6).

Крутизна детекторной характеристики определяет эффективность детектора как преобразователя входного сигнала. Детекторная характеристика реального детектора отличается от идеальной. Но существует область изменения амплитуды входного напряжения, в которой  связь между конечными приращениями амплитуды выходного и входного напряжений оказывается практически линейной. В связи с этим амплитудный детектор (АД) целесообразно охарактеризовать дифференциальным параметром

.

Крутизна детекторной характеристики детектора является безразмерной величиной и по аналогии с показателями любого усилительного каскада ее можно назвать коэффициентом усиления  детектора. Искажения, вносимые детектором, разделяют на линейные и нелинейные.

Линейные искажения определяются зависимостью модуля крутизны детекторной характеристики (рис. 5.7) и зависимостью сдвига фаз между выходным напряжением и модулируемым параметром при синусоидальном изменении последнего (рис. 5.8) от частоты модуляции.

Коэффициентом фильтрации детектора называют отношение амплитуды входного напряжения к амплитуде напряжения высокой частоты на выходе детектора:

.

5.1.4. Искажения, вызванные нелинейностью детекторной характеристики

Форма детекторной характеристики зависит от сопротивления нагрузки детектора.

На рис. 5.10 показана форма детекторных характеристик для тока в нагрузке

,

где  – ток на выходе детектора при различных сопротивлениях нагрузки детектора . Увеличение сопротивления нагрузки детектора улучшает линейность детекторной характеристики.

При достаточно большом сопротивлении нагрузки детекторная характеристика (рис. 5.11) имеет три участка: квадратичный участок (1), соответствующий режиму детектирования слабых сигналов, линейный (3), соответствующий режиму детектирования сильных сигналов, и промежуточный (2), соответствующий режиму детектирования средних сигналов.

5.1.5. Нелинейные искажения, вызванные избыточной постоянной времени нагрузки детектора

Постоянная времени нагрузки детектора . Для уменьшения нелинейных искажений, вызванных нелинейностью детекторной характеристики,  следует увеличивать.

Емкость конденсатора  и постоянную времени целесообразно увеличивать. Однако увеличение приводит к тому, что при спаде амплитуды входного напряжения скорость заряда конденсатора  через резистор  может оказаться недостаточной для того, чтобы в следующий период напряжение на  конденсаторе определялось амплитудой входного сигнала, действующей в этот период. Детектор становится инерционным.

5.2. Содержание работы

1. Снять и построить динамическую модуляционную характеристику при двух значениях напряжения высокой частоты.

2. Снять детекторную характеристику при m=50% и Uвч=0,06 В. Построить график.

3. Зарисовать осциллограммы выходного напряжения в зависимости от изменения постоянной времени нагрузки детектора.

4. Вычислить крутизну детекторной характеристики.

5.3. Порядок выполнения работы

Лабораторный модуль "Исследование АМ и детектирования АМ-колебаний" установить в лабораторный стенд в одну из ячеек. Заземлить корпус лабораторного стенда. Включить тумблер питания лабораторного стенда.

1. Снять динамическую модуляционную харатеристику амплитудной    модуляции при двух значениях напряжения высокой частоты: =0,06 В и  =0,03 В (принципиальная схема рис. 5.11). Внешний вид передней панели   лабораторного модуля для исследования АМ колебаний приведен на рис. 5.12.

Включить питание лабораторного модуля. Установить тумблер         "Вкл. дет" в нижнее положение, ручку "Uдет" в положение "10". Тумблер установить в положение 1 ("контур"), изменением частоты генератора настроиться  в резонанс. Изменяя величину напряжения  генератором Г3-112, измерить коэффициент модуляции по осциллографу С1-65А. Построить модуляционную характеристику.

2. Снять детекторную характеристику при коэффициенте модуляции m=50% и =0,06 В. Тумблер "Вкл. дет" установить в верхнее положение.

К разъему "Вых. ЗЧ" подключить милливольтметр В3-38. Установить переключатель "Пост. врем."  в  положение 1, снять зависимость Uвых  от положения резистора Uвх.дет  1, 2, ... ,10.  Данные записать в таблицу и построить график.

3. Зарисовать осциллограммы при m=50% и Uвч=0,06 В, изменяя положение тумблера 1 или 2 (1 – контур, 2 – резистор 1кОм). Тумблер "Вкл. дет" оставить в нижнем положении .

4. Зарисовать осциллограммы Uвч в зависимости от изменения постоянной времени нагрузочного сопротивления.

5. Вычислить крутизну детекторной характеристики, пользуясь графиком.

5.4. Контрольные вопросы

  1.  В чем отличие процесса преобразования частоты от процесса амплитудной модуляции?
  2.  Дайте определение статической и динамической модуляционных характеристик.
  3.  Какой вид имеет детекторная характеристика?

4. Чем вызваны искажения детекторной характеристики?

5.5. Литература

  1.  Паяшков В.В. Радиоприемные устройства. M.: Радио и связь, 1984. С. 156-194.
  2.  Манаев Е.И. Основы радиоэлектроники. 2-е изд., перераб. и доп. М.: Радио и связь, 1985. С. 383-425.
  3.  Ефимчик М.К., Шушкевич С.С. Основы радиоэлектроники. Минск: Изд-во БГУ, 1981. С. 183-188.
  4.  Баскаков С.И. Радиотехнические цепи и сигналы: Учеб. для вузов по спец. "Радиотехника". 2-е изд., перераб. и доп. М.: Высш. школа, 1988. С. 88-96.               


 

А также другие работы, которые могут Вас заинтересовать

26064. Макромолекулы как основа организации биологических структур 23.39 KB
  Первичная структура линейная. Вторичная структура. Структура полипептидной цепи спирализована неполностью. Такие параллельно расположенные участки структура конфигурация представляет собой складчатую структуру которая включает параллельные цепи связанные водородной связью.
26065. Нуклеиновые кислоты, основные типы, физ-хим 14.65 KB
  Сущт несколько форм ДНК Bформаправозакрученная длина полного витка 34 ангстрема ширина 20 А полный виток спирали10 пар нуклеотидов. Аформа: 11 пар оснований в витке угол наклона 20 Сформа9. Третичная формаукладка в прве. Исходная кольцевая форма у бактерий хлоропластов митох.
26066. Углеводы, их биологическая роль, классификация 12.82 KB
  Классификация: Простые сахарамоносахды их производные; Сложные сахараолигосахариды и полисахариды. Моносахаридыальдозы и кетозы. Олигосахаридыуглеводы молекулы которых содержат 210 моносахаридных остатков. Среди них различают гомополисахды из остатков 1 моносахда гетерополисахдыиз остатков разных моносахдов.
26067. Ферменты как биокатализаторы, их специфичность 14.05 KB
  Ферменты явлся глобулярными белками вклт простые однокомпонентные и сложные двукомпонентные. Белковая часть двукомпонентных ферментов называется апоферментом молекула в целом холоферментом небелковые компоненты легко диссоциирущие из комплекса коферменты. Ферменты внутри клетки содержатся и действуют в определенных ее органеллах. Почти все ферменты гликолиза обнаруживаются в цитоплазме ферменты окислительного фосфорилирования во внутренней мембране.
26071. Порядок исчисления и уплаты земельного налога 38 KB
  Налогоплательщиками налога признаются организации и физические лица обладающие земельными участками на праве собственности праве постоянного бессрочного пользования или праве пожизненного наследуемого владения. При установлении налога представительный орган муниципального образования законодательные представительные органы государственной власти городов федерального значения Москвы и СанктПетербурга вправе не устанавливать отчетный период. Порядок исчисления налога и авансовых платежей по налогу 1.
26072. Инвентаризация имущества и обязательств. Порядок отражения результатов инвентаризации на счетах бухгалтерского учета 36 KB
  Порядок отражения результатов инвентаризации на счетах бухгалтерского учета. Проведение инвентаризации имущества и обязательств является важным условием обеспечения достоверности данных бухгалтерского учета и отчетности организации. Порядок и сроки проведения инвентаризации организация устанавливает самостоятельно и закрепляет в учетной политике. Проведение инвентаризации обязательно в следующих случаях: при передаче имущества в аренду выкупе продаже; при преобразовании государственного или муниципального унитарного предприятия; перед...