11844

Методы безусловной оптимизации

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа: Методы безусловной оптимизации ЦЕЛЬ РАБОТЫ Цель лабораторной работы закрепление навыков исследования функций на выпуклость решение задач на нахождение безусловного экстремума выпуклой функции аналитически и численными методами...

Русский

2013-04-13

170 KB

25 чел.

Лабораторная работа:

«Методы безусловной оптимизации» 

  1.  ЦЕЛЬ РАБОТЫ

Цель лабораторной работы - закрепление навыков исследования функций на выпуклость, решение задач на нахождение безусловного экстремума выпуклой функции аналитически и численными методами, изучение способов визуализации функций двух переменных в различных вычислительных пакетах.

  1.  Выполнение работы

Исследуемая функция:

График функции приведен на рисунке  1.

Рисунок 1. График исследуемой функции

Аналитический метод.

Находим первые производные:

Приравниваем производные нулю и решаем систему уравнений:

Находим вторые производные и составляем матрицу Гессе

Матрица Гессе положительно определена, следовательно в точке (1,1) глобальный минимум.

Метод Ньютона.

Этот метод реализован  средствами MATLAB текст программы приведен ниже

% Значения коэффициентов

g = 0.1; % дельта

% Начальная точка

x = [-0.1;1.5];

k = 1; % Счетчик шагов

kmax = 100; % Предельное число шагов,

% задается для предотвращения зацикливания

% Массивы для хранения промежуточных координат

x1trace = [x(1,1)];

x2trace = [x(2,1)];

i = 2;

while k < kmax;

% Вычисление коэффициента шага

%градиент

gr = [2*x(1,1) - 400*x(1,1)*(x(2,1)-x(1,1).^2)-2; 200*(x(2,1)- x(1,1).^2)];

%матрица Гессе

H=[1200*x(1,1).^2-400*x(2,1)+2,-400*x(1,1);-400*x(1,1),200];   

d = -inv(H)*gr; % шаг

x = x + d;   % модификация точки

% Сохранение координат

x1trace(i) = x(1,1);

 x2trace(i) = x(2,1);

i = i + 1;

% Проверка условия останова

if sqrt(gr(1,1)^2 + gr(2,1)^2) <= g;

break;

% Выход из цикла в случае выполнения условия

end

k = k + 1;

end

% Построение графика

X = -2:0.1:2;

Y = -2:0.1:2;

[X, Y] = meshgrid(X, Y);

Z = 100*(Y-X.^2).^2 + (1-X).^2; % функция 

[C, h] = contour(X, Y, Z);

clabel(C, h)

% Отображение меток на линиях уровня

hold on;

plot(x1trace, x2trace, '-+');

% Вывод начальной точки на график

text(x1trace(1) + 0.1, x2trace(1) + 0.1, 'M0');

%x1trace

%x2trace

% Вывод решения на график

text(-1.5, 1.5, char(['x1 = ' num2str(x(1,1))], ['x2 = ' num2str(x(2,1))], ['k = ' num2str(k)]));

Результат выполнения программы приведен на рисунке 2.

Рисунок 2. Результат выполнения прогаммы.

Выводы:  функция  была исследована на выпуклость. Была найдена точка глобального минимума (1,1)  аналитическим и численным методом Ньютона. Численный метод реализован средствами MATLAB.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

  1.  Методы оптимизации функций многих переменных. Лабораторный практикум. Екатеринбург 2007, 42 с.
  2.  Применение пакета “MATLAB” для решения нелинейных задач оптимизации градиентными методами. Методические указания для семинаров по дисциплине «Оптимизация и оптимальное управление технологическими процессами» Москва 2009, 32 с.
  3.  Гилл Ф., Мюррей У., Райт М. Практическая оптимизация: пер.с англ. – М.: Мир, 1985 – 509 с., ил.
  4.  Методы Оптимизации Систем Автоматизированного Проектирования. Метод Ньютона – электронный ресурс. http://optimizaciya-sapr.narod.ru/bez_mnogomer/nuton.html


 

А также другие работы, которые могут Вас заинтересовать

25303. РОЛЬ СЕНСОРНЫХ СИСТЕМ В УПРАВЛЕНИИ ДВИЖЕНИЯМИ. СОМАТОСЕНСОРНАЯ ЧУВСТВИТЕЛЬНОСТЬ И КОРРЕКЦИЯ ДВИЖЕНИЙ 35.5 KB
  СОМАТОСЕНСОРНАЯ ЧУВСТВИТЕЛЬНОСТЬ И КОРРЕКЦИЯ ДВИЖЕНИЙ Выполнение движений сопряжено с растягиванием кожи и давлением на отдельные ее участки поэтому кожные рецепторы оказываются включенными в анализ движений. Эта функциональная связь является физиологической основой комплексного кинестетического анализа движений при котором импульсы кожных рецепторов дополняют мышечную проприоцептивную чувствительность. Благодаря проприоцепции возможны коррекция уточнение движений в соответствии с текущими потребностями выполнения произвольного действия....
25304. Физиологические реакции живого организма 39 KB
  Раздражение Раздражителем живой клетки или организма как целого может оказаться любое изменение внешней среды или внутреннего состояния организма если оно достаточно велико возникло достаточно быстро и продолжается достаточно долго. Клетки значительно более чувствительны по отношению к своим адекватным раздражителям чем к неадекватным. Возбудимость Некоторые клетки и ткани нервная мышечная и железистая специально приспособлены к осуществлению быстрых реакций на раздражение.
25305. Стресс 33.5 KB
  0004 ГОМЕОСТАЗ Внутренняя среда организма в которой живут все его клетки это кровь лимфа межтканевая жидкость. Ее характеризует относительное постоянство гомеостаз различных показателей так как любые ее изменения приводят к нарушению функций клеток и тканей организма особенно высокоспециализированных клеток центральной нервной системы. Способность сохранять гомеостаз в условиях постоянного обмена веществ и значительных колебаний факторов внешней среды обеспечивается комплексом регуляторных функций организма. существовать и двигаться...
25306. Адаптация 28 KB
  У человека адаптация выступает как свойство организма которое обеспечивается автоматизированными самонастраивающимися саморегулирующимися системами сердечнососудистой дыхательной выделительной и др. Адаптация это эффективная и экономная адекватная приспособительная деятельность организма к воздействию факторов внешней среды. Чем выше уровень интеграции координированности сложных регуляторных процессов тем эффективнее адаптация.
25307. Природа потенциала покоя 28.5 KB
  Согласно этой теории биоэлектрические потенциалы обусловлены неодинаковой концентрацией ионов К' N3' СГ внутри и вне клетки и различной проницаемостью для них поверхностной мембраны. Протоплазма нервных и мышечных клеток содержит в 3050 раз больше ионов калия в 810 раз меньше ионов натрия и в 50 раз меньше ионов хлора чем внеклеточная жидкость. На структурных элементах мембраны фиксируются различные ионы что придает стенкам ее пор тот или иной заряд и тем самым затрудняет или облегчает прохождение через них ионов. Так предполагается...
25308. Потенциал действия 37.5 KB
  Потенциал действия может быть зарегистрирован двояким способом: с помощью электродов приложенных к внешней поверхности волокна внеклеточное отведение и с помощью микроэлектрода введенного внутрь протоплазмы внутриклеточное отведение. Долгое время физиологи полагали что потенциал действия представляет собой лишь результат кратковременного исчезновения той разности потенциалов которая существует в покое между наружной и внутренней сторонами мембраны. Однако точные измерения проведенные с помощью внутриклеточных микроэлектродов...
25309. Законы раздражения 44 KB
  Механизм раздражающего действия тока при всех видах стимулов в принципе одинаков однако в наиболее отчетливой форме он выявляется при использовании постоянного тока прямоугольной формы. При использовании в качестве раздражителя электрического тока порог выражается в единицах силы тока или напряжения. Существует два способа подведения электрического тока к ткани: внеклеточный и внутриклеточный. Недостаток этого метода заключается в значительном ветвлении тока: только часть его проходит через мембраны клеток часть же ответвляется в...
25310. Строение и классификация нейронов 35.5 KB
  Место отхождения аксона от тела нервной клетки называют аксонным холмиком. Дендриты это многочисленные ветвящиеся отростки функция которых состоит в восприятии импульсов приходящих от других нейронов и проведении возбуждения к телу нервной клетки. В центральной нервной системе тела нейронов сосредоточены в сером веществе больших полушарий головного мозга подкорковых образований мозжечка мозгового ствола и спинного мозга.
25311. Строение и работа синапсов 28 KB
  Они образуются концевыми разветвлениями нейрона на теле или отростках другого нейрона. В структуре синапса различают три элемента: 1пресинаптическую мембрану образованную утолщением мембраны конечной веточки аксона; 2синаптическую щель между нейронами; 3постсинаптическую мембрану утолщение прилегающей поверхности следующего нейрона. В большинстве случаев передача влияния одного нейрона на другой осуществляется химическим путем.Для возбуждения нейрона необходимо чтобы ВПСП достиг порогового уровня.