11853

Устройство контроля четности

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лабораторная работа №7 Устройство контроля четности Теоретическая часть Операции контроля четности двоичных чисел позволяет повысить надежность передачи и обработки информации. Ее сущность заключается в суммировании по модулю 2 всех разрядов с целью выяснени

Русский

2013-04-13

67 KB

47 чел.

Лабораторная работа №7

«Устройство контроля четности»

Теоретическая часть

Операции контроля четности двоичных чисел позволяет повысить надежность передачи и обработки информации. Ее сущность заключается в суммировании по модулю 2 всех разрядов с целью выяснения четности числа, что позволяет выяснить наиболее вероятную ошибку в одном из разрядок двоичной последовательности. Например, если при передаче кода 1001 произойдет сбой во втором разряде, то на приемном пункте получим код 1101 — такую ошибку определить в общем случае затруднительно. Если же код относится к двоично-десятичному (8-4-2-1), то ошибку легко обнаружить, поскольку полученный код (десятичный эквивалент - число 13) не может в принципе принадлежать к двоично-десятичному.

Обнаружение ошибок путем введения дополнительного бита четности происходит следующим образом. На передающей стороне передаваемый код анализируется и дополняется контрольным битом до четного или нечетного числа единиц в суммарном коде. Соответственно суммарный код называется четным или нечетным. В случае нечетного кода дополнительный бит формируется таким образом, чтобы сумма всех единиц в передаваемом коде, включая контрольный бит, была нечетной. При контроле четности все, естественно, наоборот. Например, в числе 0111 число единиц нечетно. Поэтому при контроле нечетности дополнительный бит должен быть нулем, а при контроле четности — единицей. На практике чаще всего используется контроль нечетности, поскольку он позволяет фиксировать полное пропадание информации (случай нулевого кода но всех информационных разрядах). На приемной стороне производится проверка кода четности. Если он правильный, то прием разрешается, в противном случае включается сигнализация ошибки или посылается передатчику запрос на повторную передачу.

Схема формирования бита четности для четырехразрядного кода показана на рис. 9.25. Она содержит четыре элемента Исключающее ИЛИ, выполняющих функции сумматоров но модулю 2 (без переноса) и состоит из троих ступеней. На первой ступени попарно суммируются все биты исходного кода на входах А, В, С, D. На второй ступени анализируются сигналы первой ступени и устанавливается четность или нечетность суммы входного кода. На третьей ступени полученный результат сравнивается с контрольным сигналом на входе Е, задающим вид используемого контроля, в результате чего на выходе F формируется пятый дополнительный бит четности, сопровождающий информационный сигнал в канале передачи.

Рис. 9.25. Схема формирователи бита четности четырехразрядного кода

Рис. 9.26. Результаты моделирования схемы на рис. 9.25

Рис. 9.27. Схема включения ИМС 74280

Результаты моделирования формирователя показаны на рис. 9.26 в виде таблицы истинности из 32 возможных двоичных комбинаций и булева выражения (из 32 комбинаций на рис. 9.2(5 видны только первые 16, остальные просматриваются с помощью линейки прокрутки). Для просмотра составляющих булева выражения необходимо мышью поместить курсор в дополнительный дисплей и передвигать его клавишами управления курсором.

В библиотеке программы EWB схема проверки на четность и нечетность представлена ИМС 74280 (аналог — К555ИП5), схема ее включения показана на рис. 9.27. ИМС 74280 имеет 9 входов (А, B...I) и два выхода (EVEN, ODD), один из которых — инверсный. Вход I используется для управления видом контроля (0 — контроль четности, 1 — контроль нечетности) и управляется переключателем Z (управляется с клавиатуры одноименной клавишей). Вывод NCnot connection — пустой, т.е. внутри ИМС к нему ничего не подключено.

Правильность функционирования схемы на рис. 9.27 проверяется с помощью генератора слова, при этом тип контроля (четности или нечетности) выбирается переключателем Z; на входы рассматриваемого устройства подаются различные двоичные комбинации; состояние выходов ИМС контролируется подключенными к ним светоиидикаторами (логическими пробниками).


Ответы на контрольные вопросы и задания

  1.  Какое назначение имеют формирователи кода четности, где они могут быть использованы?

и

  1.  Какая форма контроля четности чаще всего используется на практике, в частности, в Вашем компьютере, если в нем установлены модули ОЗУ с нечетным числом микросхем (см. разд. 5.12)?

и

  1.  Из представленных на экране логического преобразователя данных (рис. 9.26) выберите комбинации, относящиеся к контролю четности и нечетности, а также соответствующие им слагаемые булева выражения.

и

  1.  Проверьте правильность функционирования схемы на рис. 9.27, подавая на входы двоичные комбинации с генератора слова.

И


Список литературы:

  1.  Карлащук В. И. Электронная лаборатория на IBM PC. Программа Electronics Workbench и ее применение. М.: “Солон-Р”, 2000.


 

А также другие работы, которые могут Вас заинтересовать

34338. Пр-во азотных мин.удобрений и их классификация 30.5 KB
  Прво азотных мин. Большинство азотных удобрений получают нейтрализацией кислот щёлочами.глубину потери 225; поглощается по типу обменной адсорбции Карбамид мочевина 2NH3CO2=NH2COONH4= =CONH22H2O 2000C; 20 МПа 466 Лучшее удобрение для внекорневой подкормки растений Аммиачная селитра NH3HNO3=NH4NO3Q 3435 Закисляет почву гигроскопична слеживается взрывоопасна Сульфат аммония 2NH3H2SO4=NH42SO4Q 20521 Эффективен под орошаемые культуры рис хлопчатник Среди азотных удобрений самая большая массовая доля азота в...
34339. Фосфорная кислота 24 KB
  Н3РО4 безводная фосф кислота представляет собой бесцветное вещество плавящиеся при температуре 42. Однако на практике имеют дело с жидкой Н3РО4 что объясняется склонностью Н3РО4 к переохлаждению при темп 121С При небольшом переохлаждении она представляет собой густую сиропоподобную жидкость плотностью 188 г см^3 При нагревании водные растворы ортофосф кислоты теряют воду образуя пирафосфорная а затем метофосф кислота. Безводная ортофосф кислота очень агрессивна.
34340. Особенности производства калийных удобрений 29 KB
  Выделение хлористого калия из сильвинитовых руд может быть основано на различии механических физических или химических свойств составляющих компонентов. Переработка сильвинитов для получения хлористого калия по галургическому методу основана на физикохимических особенностях системы NCl КС1 Н2О. Эта особенность системы NCl КС1 Н2О используется для производства хлористого калия из сильвинитов по галургическому методу. Рационально построенная схема производства хлористого калия из сильвинита должна учитывать следующие технологические...
34341. Фосфорные минеральные удобрения 24 KB
  Фосфорные минеральные удобрения Фосф. К фосфорным удобрениям относятся простой и двойной суперфосфат принадлежащие к классу водорастворимых удобрений и комплексные удобрения. Фосфор вносят в почву и с помощью сложного удобрения аммофоса. Фосфорные удобрения получают как физическими так и химическими методами.
34342. Технология производства и экономическая эффективность выпуска и использования пластмасс 30.5 KB
  Технология производства и экономическая эффективность выпуска и использования пластмасс. Изделия из пластмасс наиболее часто получают методами горячего прессования литья под давлением экструзии выдувания обработки резанием. Прессование применяется главным образом для переработки термореактивных пластмасс. термореактивная смола переводится в плавкое состояние при котором и происходит вторая стадия процесса формование; затем происходит реакция поликонденсации и пластмасса отверждается становясь неплавкой и нерастворимой.
34343. Сырьевые материалы и основы производства резины 28 KB
  Резину изготавливают с помощью вулканизации. В результате вулканизации каучук превращается в прочную эластичную упругую массу резину. В результате вулканизации молекулы каучука сливаются между собой дисульфидными мостиками в одну трехмерную макромолекулу. Большую роль играют так называемые ускорители вулканизации органические соединения содержащие серу или азот меркаптобензтиазол дифенилгуанидин и др.
34344. Основные свойства и назначения природных и искусственных строительных материалов 21 KB
  Основные свойства и назначения природных и искусственных строительных материалов. Основные свойства строительных материалов можно разделить на несколько групп. К 1ой группе относятся физические свойства материалов: плотность и пористость. Ко 2й свойства характеризующие устойчивость материала к воздействию воды и низких температур: водопоглощение влажность влагоотдача гигроскопичность водопроницаемость водо морозостойкость.
34345. Классификация и свойства керамических материалов 21.5 KB
  Классификация и свойства керамических материалов Керамические строительные материалы это искусственные каменные изделия получаемые из глиняных масс с добавками или без добавок других материалов путем формования и последующего обжига. Керамические материалы и изделия классифицируются по различным признакам. В зависимости от структуры керамические материалы разделяют на две основные группы: Плотные спекшиеся имеющие блестящий раковистый излом не пропускающие воду с водопоглощением менее 5 клинкерный кирпич для мощения дорог плитки для...
34346. Технология производства керамического кирпича 23 KB
  Технология производства керамического кирпича Несмотря на обширный ассортимент разнообразие форм и свойств керамических изделий основные этапы их производства являются общими и включают следующие стадии: Карьерные работы добыча транспортирование и хранение запаса глин подготовку глиняной массы формование изделий сушку отформованных изделий обжиг высушенных изделий обработку изделий глазурование ангобирование и прочее и упаковку. Формование изделий осуществляется преимущественно на прессах: при первом способе подготовке глиняной...