11870

Применение программы РSpice для моделирования однотактного преобразователя постоянного напряжения с обратным диодом

Лабораторная работа

Информатика, кибернетика и программирование

Ознакомление со схемой однотактного преобразователя постоянного напряжения с обратным диодом (ОПНО), расчет элементов и построение Pspice-модели преобразователя.

Русский

2014-03-20

220.5 KB

11 чел.

Лабораторная работа №3

Применение программы РSpice для моделирования однотактного преобразователя постоянного напряжения с обратным диодом.

Цель работы - ознакомление со схемой однотактного преобразователя постоянного напряжения с обратным диодом (ОПНО), расчет элементов и построение Pspice-модели преобразователя.

3.1. Схема и принцип действия ОПНО

В источниках электропитания находят применение однотактные преобразователи с самовозбуждением (автогенераторы). На рисунке 3.1 показана схема простейшего однотактного автогенератора.

Рис.3.1

Схема представляет собой релаксационный генератор с трансформаторной обратной связью, выполненный на транзисторе, в коллекторную цепь которого включен трансформатор питания, через первичную обмотку которого подключено входное напряжение питания Uп [1]. Способ включения силового выпрямительного диода VD является отличительным признаком однотактного преобразователя с обратным диодом.

При подключении напряжения питания Uп по цепи W1, Сd, и Rd начнет протекать ток, который вызовет нарастание магнитного потока в магнитопроводе трансформатора. Появляющееся при этом напряжение на первичной обмотке W1 трансформируется в обмотку положительной обратной связи W2, полярность подключения которой такова, что она способствует полному открыванию транзистора. Когда ток коллектора достигнет своего максимального значения полярность напряжений на обмотках трансформатора изменится на обратную и происходит лавинообразный процесс запирания транзистора. Напряжение на вторичной обмотке имеет прямоугольную форму.

Полярность подключения силового диода выпрямителя ко вторичной обмотке трансформатора определяет способ передачи энергии в нагрузку. При открытом транзисторе VT к W1 приложено напряжение Uп и во вторичную обмотку трансформируется импульс напряжения длительностью tи. Однако включенный в обратном направлении диод VD в это время закрыт и нагрузка Rн отключена от преобразователя.

В момент паузы tп, когда транзистор закрыт, полярность напряжения на всех обмотках трансформатора изменяется на обратную, диод VD открывается и выпрямленное напряжение прикладывается к нагрузке. При следующем цикле, когда транзистор VT открывается, а диод запирается, конденсатор разряжается на нагрузку Rн, обеспечивая протекание постоянного тока Iн. Индуктивность вторичной обмотки трансформатора при этом играет роль дросселя сглаживающего фильтра. ОПНО обеспечивает развязку и защиту выходного напряжения от помех по входным шинам питания, работает с простейшими емкостными фильтрами.

3.2. Расчет элементов ОПНО

Исходные данные:

напряжение питающего напряжения   Uп, В

выходное напряжение     Uн, В

мощность нагрузки      Pн, Вт

период преобразования     Т, мкс

коэффициент пульсаций выходного напряжения Kп, %.

3.2.1. Расчет элементов силовой части преобразователя

На рисунке 3.2 приведены совмещенные диаграммы напряжения на коллекторе транзистора VT Uк и тока коллектора iк. Диаграммы построены с допущением того, что постоянная времени демпфирующей цепи RdCd сравнительно мала, сопротивление транзистора в открытом состоянии равно нулю, а в закрытом - бесконечности, время перехода транзистора из одного состояния в другое так же сравнительно мало, напряжение на выходе преобразователя идеально сглажено, индуктивности обмоток трансформатора имеют линейный характер, активное сопротивление обмоток равно нулю и коэффициент связи индуктивностей обмоток близок к 1. Приведенные ниже расчетные соотношения так же соответствуют этим допущениям.

Рис.3.2

Из условия равенства средних значений напряжений на первичной и вторичной обмотках трансформатора следует уравнение

 (3.1)

Из уравнения (3.1), выражая tи получим

 (3.2)

За время открытого состояния транзистора tи ток в первичной обмотке трансформатора W1 достигнет максимального значения, определяемое по формуле

 , (3.3)

где L1 - индуктивность первичной обмотки трансформатора.

Энергия запасенная в индуктивности первичной обмотки определяется по формуле

 (3.4)

Поскольку при принятых допущениях энергия, запасенная в индуктивности первичной обмотки, целиком трансформируется в нагрузку, то будет справедливо равенство [2]

 (3.5)

Решая систему уравнений (3.3) и (3.5) относительно imax получим

 (3.6)

Выражая из (3.3) формулу для определения индуктивности и подставляя в нее (3.6), получим

 (3.7)

Индуктивность вторичной обмотки находится с учетом коэффициента трансформации.

 (3.8)

Амплитуда пульсаций напряжения на конденсаторе определяется по формуле [1]

 (3.9)

откуда следует соотношение для определения емкости Сf

 (3.10)

3.2.2. Расчет элементов цепи управления транзистором VT

Задавшись напряжением на выводах обмотки W2, находим индуктивность обмотки управления по формуле

 (3.11)

Сопротивление в цепи обратной связи находится по формуле

 (3.12)

где iбк - ток базы, соответствующий границе режима насыщения и активного режима при заданном токе коллектора транзистора imax. Способ определения iбк приведен в методических указаниях.


Задание к лабораторной работе

Для исходных данных выбранного варианта задания (см. табл. 3.1) рассчитать параметры элементов преобразователя, составить файл задания на моделирование и зарисовать (распечатать) совмещенные диаграммы тока первичной обмотки трансформатора, тока обратного диода, напряжения на коллекторе транзистора, напряжения на вторичной обмотке. Сделать вывод о точности аналитического расчета элементов преобразователя.

Таблица 3.1

Вариант

задания

Uп, В

Uн, В

Pн, Вт

f=1/T, кГц

Кп, %

1

200

40

10

10

1

2

200

40

20

10

1

3

200

40

30

10

1

4

200

40

40

10

1

5

200

40

50

10

1

6

50

20

10

10

1

7

100

20

10

10

1

8

150

20

10

10

1

9

200

20

10

10

1

10

250

20

10

10

1

11

200

20

15

10

1

12

200

25

15

10

1

13

200

30

15

10

1

14

200

35

15

10

1

15

200

40

15

10

1

16

200

30

10

10

1

17

200

30

10

15

1

18

200

30

10

20

1

19

200

30

10

25

1

20

200

30

10

30

1

Методические указания

Чтобы определить ток  базы iбк транзистора соответствующий границе активного режима и режима насыщения при заданном токе коллектора ik нужно рассчитать схему на рисунке 3.3 по следующему заданию на моделирование:

iбк

.Tran 1e-6 1.5 Uic

.Probe

ik 0 3 200m

R0 1 0 1e6

R1 3 2 0.1

R2 3 0 100

Q1 2 1 0 [имя модели транзистора]

ib 0 1 Pwl(0 50m  1 0m)

.lib Vnom.lib

.End

Рис.3.3

По графику на рисунке 3.4 находим iбк, равный току базы соответствующий моменту времени, когда происходит резкое уменьшение тока коллектора.

Рис.3.4

Ниже приведены распечатка файла, содержащего задание на моделирование преобразователя, схема которого показана на рисунке 3.1 и результаты моделирования в графическом виде . Файл задания составлен для Uп=200 В, Uн= 30 В, Рн=10 Вт, f=10 кГц и Кп= 1%. Номера узлов элементов схемы в файле задания соответствуют номерам узлов схемы на рисунке 3.1. Подробные сведения по эффективному использованию параметров директив управления заданием на моделирование в [3].

OPNO

.TRAN 1e-7 3700e-6 0e-6 UIC

.Options reltol=0.0001

.PROBE

задание начального условия

.ic V(9)=30.8

V1 1 0 200

Rw1 1 2 1.11

L1 2 3 3.38e-3

Q1 3 4 0 Q2T928A

D1 4 3 D2D204A

Cd 3 5 15e-9

Rd 5 0 150

L2 6 0 20.0e-6

Roc 6 4 400

C2 6 4 0.01e-6

L3 0 7 3.38e-3

K L1 L2 L3 0.99

Cf 9 0 400e-6

RH 9 0 90.0

Rw3 7 8 1.2

D2 8 9 D2D212A

.lib Vnom.lib

.lib Diod.lib

.END

На рисунке 3.5 приведена распечатка кривых напряжений на вторичной обмотке и на коллекторе транзистора, а также кривых токов в обратном диоде и в первичной обмотке.

Рис.3.5

РЕКОМЕНДУЕМАЯ  ЛИТЕРАТУРА

Источники электропитания радиоэлектронной аппаратуры: Справочник / Г.С. Найвельт, К.Б. Мазель, И.И. Хусаинов и др.; под ред. Г.С. Найвельта. - М.: Радио и связь, 1985. - 576 с.,ил.

Иванов-Циганов А.И. Электропреобразовательные устройства РЭС: Учеб. для вузов по спец. “Радиотехника” М. Высш. шк., 1991.-272 с.:ил.

Разевиг В.Д. Применение программ P - CAD и Pspice для схемотехнического моделирования на ПЭВМ: В 4 выпусках. Вып. 3: Моделирование аналоговых устройств. - М,: Радио и связь 1992. - 120с.: ил.



 

А также другие работы, которые могут Вас заинтересовать

57927. Клітинний цикл. Мітоз 62.5 KB
  Німецький вчений Рудольф Вірхов стверджував що клітина може виникнути тільки з попередньої клітини в результаті її поділу. Відома його знаменита фраза усяка клітина з клітини З таким поняттям як поділ клітини ви вже неодноразово зустрічались на уроках біології.
57928. Створення програм з використанням оператора циклу з параметром 140 KB
  Після цього уроку ви зможете: використовувати оператор циклу з параметром для створення програм обчислення суми та добутку скінченої кількості чисел знаходження кількості елементів з певними властивостями; наводити особливості накопичення суми та...
57929. Снежная книга Зимы 214.5 KB
  Цель: обобщить представления детей о зиме, познакомить с новыми рассказами и стихотворениями о зиме; продолжить работу над техникой чтения. Воспитывать любовь к родному слову, бережное отношение к природе.
57930. Цитологія – наука про будову і функції клітини. Історія вивчення клітини. Методи цитологічних досліджень 356 KB
  Мета: сформувати основні положення клітинної теоріїрозширити уявлення про історію вивчення клітини розкрити основні методи цитологічних досліджень; розвивати критичне і логічне мислення удосконалювати творчі здібності вміння...
57931. Зорі. Еволюція зір 340 KB
  І почнемо ми з вами саме з визначення найголовнішого небесного світила зорі. учні дають визначення зорі Вчені прийшли до висновку що зорі включаючи і наше Сонце мають життєві цикли. Ці стадії різні оскільки зорі складаються з різних елементів і відрізняються розмірами.
57932. Зажурилась зимонька не дарма, молодої силоньки вже нема 62.5 KB
  Мета: познайомити з традиціями святкування Стрітення, прикметами, які з ним пов’язані; формувати навички виразного читання віршів; підтримувати у дітей інтерес до занять фізкультурою, привчати дітей грати в командних іграх-естафетах...
57933. За О. Цегельською. Пригода на ковзанці. Безпечний відпочинок взимку 75.5 KB
  Мета: познайомити з оповіданням О. Цегельської; формувати вміння читати, зв’язно розповідати; розширювати знання учнів про зимові розваги; закріпити знання правил про поведінку на льоду, показати, яку небезпеку може приховувати вода; розвивати пам’ять, увагу, мислення, пізнавальний інтерес...
57934. Графічні можливості текстового процесора MS WORD 1.94 MB
  Мета: навчальна: систематизувати і узагальнити знання учнів за даною темою; розвивальна: розвинути практичні навички опрацювання графічної інформації під час роботи з текстовими документами, творчі здібності і естетичний смак, сприяти профорієнтації...
57935. Опрацювання табличних даних за допомогою будованих функцій 19.78 MB
  Учбова: Навчити дітей на практиці застосовувати набуті знання та навички з використання вбудованих функцій та формул в електронних таблицях. Виховна: Виховати у дітей естетичне оформлення файлу, створеному у середовищі табличного процесора...