11873

Исследование электродвигателя постоянного тока параллельного возбуждения

Лабораторная работа

Энергетика

Цель работы Ознакомиться со способами пуска двигателя постоянного тока параллельного возбуждения исследовать механические рабочие и регулировочные свойства двигателя. Программа работы Изучить схему для экспериментального исследования э

Русский

2013-04-14

181.5 KB

35 чел.

  1.  Цель работы
    1.  Ознакомиться со способами пуска двигателя постоянного тока параллельного возбуждения, исследовать механические, рабочие и регулировочные свойства двигателя.
  2.  Программа работы
    1.  Изучить схему для экспериментального исследования электродвигателя постоянного тока параллельного возбуждения (в дальнейшем изложении ДПТПВ), состав и назначение модулей, используемых в работе
    2.  Собрать схему для экспериментального исследования ДПТПВ. Провести пробное включение
    3.  Снять естественную механическую характеристику. Снять искусственную механическую характеристику при введении сопротивления в цепь якоря. Снять искусственную механическую характеристику при ослаблении магнитного потока
    4.  Снять рабочие характеристики ДПТПВ. Снять регулировочные характеристики двигателя при изменении напряжения, подводимого к зажимам двигателя. Снять регулировочные характеристики двигателя посредством ослабления магнитного потока
    5.  Провести обработку экспериментальных данных, составить отчет и сделать заключение по работе
  3.  Приборы и оборудование

В лабораторной работе используются следующие модули:

  •  модуль питания стенда (МПС);
  •  модуль питания (МП);
  •  модуль автотрансформатора (ЛАТР);
  •  силовой модуль (СМ);
  •  модуль добавочных сопротивлений №1 (МДС1);
  •  модуль добавочных сопротивлений №2 (МДС2);
  •  модуль ввода/вывода (МВВ).
  1.  Порядок выполнения работы
    1.  Перед проведением лабораторной работы необходимо привести модули в исходное состояние. Для проведения работы на персональном компьютере должно быть загружено ПО Labdrive и выбрана соответствующая лабораторная работа.
    2.  Естественная механическая характеристика ДПТПВ

Схема для снятия естественной механической характеристики двигателя постоянного тока параллельного возбуждения, представлена на рисунке 1.


Рисунок 1 – Схема для снятия естественной механической характеристики.

Опыт проводится в следующей последовательности:

  •  включить автоматы QF1 и QF2 модулей МПС и МП соответственно;
  •  переключатель SA1 модуля автотрансформатора перевести в верхнее положение;
  •  ручкой автотрансформатора установить номинальное напряжение UЯ = UH = 220 В, произвести первое измерение;
  •  переключателем SA1 модуля МДС1 вводить сопротивления, тем самым нагружая ДПТ до тех пор, пока ток якоря не достигнет 1,5IЯН. Данные занести в таблицу 1.

Таблица 1 – данные опыта

n, об/мин

IЯ, А

UЯ, В

, рад/с

kФ, В∙с/рад

Расчетные данные.

Ток, протекающий по обмотке возбуждения, А: ,

где  – напряжение, подаваемое на обмотку возбуждения, В;

сопротивление обмотки возбуждения (Приложение Б), Ом.

Момент, развиваемый электродвигателем, Н∙м: , ,

где  – частота вращения электродвигателя, рад/с.

  1.  Искусственная механическая характеристика ДПТПВ при введении сопротивления в цепь якоря

Схема для снятия искусственной механической характеристики двигателя постоянного тока параллельного возбуждения, представлена на рисунке 1.

Опыт проводится в следующей последовательности:

  •  включить автоматы QF1 и QF2 модулей МПС и МП соответственно;
  •  переключатель SA1 модуля ЛАТР перевести в верхнее положение;
  •  ручкой автотрансформатора установить номинальное напряжение UЯ = UH = 220 В;
  •  переключатель SA1 модуля МДС2 установить в положение отличное от нуля, произвести первое измерение;
  •  переключателем SA1 модуля МДС1 вводить сопротивления, тем самым, нагружая ДПТ до тех пор, пока ток якоря не достигнет 1,5IЯН.
  •  Данные занести в таблицу 2.

Таблица 2 – данные опыта

RДЯ =

n, об/мин

IЯ, А

UЯ, В

, рад/с

kФ, В∙с/рад

  1.  Искусственная механическая характеристика ДПТПВ при ослаблении магнитного потока

Опыт проводится в следующей последовательности:

  •  включить автоматы QF1 и QF2 модулей МПС и МП соответственно;
  •  переключатель SA1 модуля ЛАТР перевести в верхнее положение;
  •  ручкой автотрансформатора установить номинальное напряжение UЯ = UH = 220 В;
  •  переключатель SA2 модуля МДС2 установить в положение отличное от нуля, произвести первое измерение;
  •  переключателем SA1 модуля МДС1 вводить сопротивления, тем самым, нагружая ДПТ до тех пор, пока ток якоря не достигнет 1,5IЯН.
  •  данные опыта занести в таблицу 3.

Таблица 3 – данные опыта

RДВ =

n, об/мин

IЯ = IН, А

  1.  Рабочие характеристики ДПТПВ

Схема для снятия рабочих характеристик двигателя постоянного тока параллельного возбуждения представлена на рисунке 1.

Опыт проводится в следующей последовательности:

  •  включить автоматы QF1, QF2;
  •  включить SA1 модуля автотрансформатора и установить напряжение UЯ = 0,75UЯН и произвести первое измерение;
  •  переключателем SA1 модуля МДС1 вводить сопротивления, тем самым нагружая ДПТ до тех пор, пока ток якоря не достигнет 1,5IЯН.
  •  данные опыта занести в таблицу 4.

Таблица 4 – данные опыта

Данные опыта

Расчетные данные

UЯ

IЯ

n

ω

iВ

РЯ

ΔPЭЛ.В.

Р1

СМ

М

Iа0

М0

М2

Р2

В

A

об/мин

рад/c

A

Вт

Вт

Вт

Н∙м

A

Н∙м

Н∙м

Вт

%

Расчетные данные.

Мощность, подводимая к якорю двигателя, Вт: .

Электрические потери в цепи возбуждения, Вт: ,

где  – ток возбуждения ДПТ, А: ,

где  – сопротивление обмотки возбуждения (Приложение Б).

Мощность, подводимая к ДПТ, Вт: ,

Электромагнитный момент, Н∙м: ,

где – принимается в зависимости от угловой частоты вращения (Приложение В).

Момент холостого хода двигателя, пропорциональный механическим потерям и потерям в стали, Н∙м: ,

где – принимается в зависимости от угловой частоты вращения (Приложение В).

Полезный момент на валу ДПТ, Н∙м: .

Полезная мощность на валу двигателя, Вт: .

Коэффициент полезного действия, %: .

По данным таблицы 4 построить рабочие характеристики.

  1.  Регулировочные характеристики двигателя при изменении напряжения, подводимого к зажимам двигателя. Схема для снятия регулировочных характеристик двигателя постоянного тока параллельного возбуждения, представлена на рисунке 1.

Частота вращения двигателей постоянного тока определяется выражением:

.

Снятие регулировочных характеристик при изменении напряжения, подводимого к зажимам двигателя, проводится в следующей последовательности:

  •  включить автоматы QF1, QF2;
  •  включить SA1 модуля автотрансформатора и установить ручкой напряжение
    UЯ = UЯН;
  •  изменением положения переключателя SA1 МДС1 нагружают ДПТ до тех пор, пока ток якоря ДПТ не достигнет примерно значений IЯ ≈ 0,5IЯН и это положение переключателя оставляют неизменным, что соответствует М2const;
  •  изменять положение ручки автотрансформатора таким образом, чтобы напряжение на зажимах цепи якоря UЯ уменьшалось примерно до 0,5UЯН. Полученные данные занести в таблицу 5.

Таблица 5 – данные опыта

Данные опыта

Расчетные данные

UЯ

IЯ

n

ω

iВ

РЯ

ΔPЭЛ.В.

Р1

СМ

М

Iа0

М0

М2

Р2

В

A

об/мин

рад/c

A

Вт

Вт

Вт

Н∙м

A

Н∙м

Н∙м

Вт

%

Расчетные данные.

Мощность, подводимая к двигателю, Вт: .

По данным таблицы 5 построить зависимости  и .

Снятие регулировочных характеристик посредством ослабления магнитного потока проводится в следующей последовательности:

  •  включить автоматы QF1 и QF2;
  •  включить SA1 модуля автотрансформатора и установить ручкой UЯ = UЯН;
  •  изменением положения переключателя SA1 МДС1 нагружают ДПТ до тех пор, пока ток якоря ДПТ не достигнет примерно значений IЯ ≈ 0,5IЯН и это положение переключателя оставляют неизменным, что соответствует М2const;
  •  переключателем SA2 модуля МДС№2 вводить сопротивление в цепь обмотки
    возбуждения, тем самым ослабляя магнитный поток. Частота вращения не должна превышать
    1800 об/мин. Полученные данные занести в таблицу 6.

Таблица 6 – данные опыта

Данные опыта

Расчетные данные

UЯ

IЯ

n

ω

iВ

РЯ

ΔPЭЛ.В.

Р1

СМ

М

Iа0

М0

М2

Р2

В

A

об/мин

рад/c

A

Вт

Вт

Вт

Н∙м

A

Н∙м

Н∙м

Вт

%

Расчетные данные.

P1 – подводимая мощность к двигателю, Вт: .

По данным таблицы 6 построить зависимости  и .

  1.  Контрольные вопросы
    1.  Как изменить направление вращения ДПТ?
    2.  Почему у ДПТ возрастает ток якоря при увеличении нагрузки на его валу?
    3.  Почему при уменьшении тока возбуждения частота вращения ДПТ возрастает?
    4.  Как должен изменяться ток якоря при уменьшении тока возбуждения и постоянном моменте сопротивления на валу двигателя?
    5.  Как изменится вид механической характеристики двигателя, если ввести в цепь якоря регулировочное сопротивления Rpr?

Вывод:


 

А также другие работы, которые могут Вас заинтересовать

27834. Трансформаторы тока в схемах релейной защиты 162.5 KB
  F1 F2 = Fном I1ω1 I2ω2 = Iномω1 разделив на ω2: I`1 I2 = I`ном следовательно I`1 = I2 I`ном Если ТТ идеальный Iном = 0 I`1 = I2 это хорошо но не возможно сделать без Iном т. Для идеального ТТ nт = nв Векторная диаграмма для ТТ Угол γ определяется потерями в стали трансформатора Е2 опережает Ф на 90 I2 отстает от Е2 на угол φ который определяется R и Х нагрузки и вторичной обмотки z2 и zн Угол δ угловая погрешность ТТ ΔI токовая...
27835. Расчет выдержек времени МТЗ 76 KB
  Основным пусковым органом МТЗ с независимой выдержкой времени является реле РТ40 а МТЗ с ограниченной выдержкой времени РТ80. Реле РТ80 Сложное большое реле которое совмещает в себе токовое времени и указательное реле. Соответственно защита на этом реле имеет преимущества. В этом реле РТ80 есть два элемента: индукционный элемент эл.
27836. Выбор тока срабатывания максимальной токовой защиты 87 KB
  max Котс учитывает неточность расчета погрешности в работе реле. Iвз максимальное значение тока при котором пусковой орган защиты реле тока возвращается в первоначальное состояние. коэффициент возврата защиты 1 всегда Iвз = Кв Iсз эта формула получена для первичных реле где Iсз = Iср Iкз = Iсз Схема включения обмоток реле и трансформаторов тока в неполную звезду для этой схемы Iр = Iср при КЗ...
27837. Токовая отсечка на линии с односторонним питанием 77 KB
  Селективность действия токовой отсечки без выдержки времени достигается тем, что ее ток срабатывания выбирается больше тока КЗ, проходящего через защиту при повреждении вне защищаемого элемента.
27839. Токовая защита со ступенчатой характеристикой выдержки времени 49 KB
  Совмещая токовую отсечку и МТЗ получаем ступенчатую характеристику с выдержкой времени. III ступень для резервирования отказов I и II ступеней.
27840. Максимальная токовая направленная защита 127 KB
  Она отличается от обычной МТЗ тем что вводится дополнительный орган определяющий направление мощности КЗ реле направления мощности который реагирует на фазу тока КЗ относительно напряжения на шинах подстанции в месте установки комплекта защиты то знак мощности и реле направления мощности блокирует комплект защиты. Если направление мощности КЗ от шин к линии то это знак мощности КЗ и реле направления мощности закрывая свои контакт разрешает комплекту МТНЗ действовать. Комплект МТНЗ состоит из 3 органов: пускового направления...
27841. Продольная дифференциальная защита 235 KB
  Расчет тока небаланса в дифференциальной защите. Ток небаланса. Iср Iнб следовательно нужно уменьшать ток небаланса. Ток небаланса геометрическая разность Iном.
27842. Трансформаторы напряжения в схемах релейной защиты: устройство, схема замещения, цель применения 104.5 KB
  Трансформаторы напряжения в схемах релейной защиты: устройство схема замещения цель применения Трансформатор напряжения в схемах РЗ. ТН так же как и ТТ обеспечивает изоляцию цепей вторичной коммутации от ВН и позволяют независимо от первичного напряжения получить стандартную величину вторичного напряжения = 100В. Однако за счет падения напряжения мы имеем в реальном ТН.