11896

Определение хлоридов в растворе

Лабораторная работа

Химия и фармакология

Лабораторная работа №113 Определение хлоридов в растворе. Краткое теоретическое введение: Фототурбидиметрия и фотонефелометрия основаны на явлении рассеяния света дисперсными системами суспензиями или золями получаемыми в результате аналитических реакций. П...

Русский

2013-04-14

68 KB

4 чел.

Лабораторная работа №113

Определение хлоридов в растворе.

Краткое теоретическое введение:

Фототурбидиметрия и фотонефелометрия основаны на явлении рассеяния света дисперсными системами — суспензиями или золями, получаемыми в результате аналитических реакций. При прохождении света через дисперсную гетерогенную систему, какой является взвесь малорастворимого вещества в момент образования, происходит ослабление светового потока в результате рассеивания и поглощения его частицами дисперсной фазы:

где  - интенсивности падающего, поглощаемого, рассеянного и прошедшего световых потоков, соответственно.

Это явление и использовано в турбидиметрических и нефелометрических методах для качественной и количественной оценки малорастворимых соединений.

В турбидиметрии измеряют интенсивность светового потока, прошедшего через дисперсную систему. Если принять рассеянный свет за фиктивно поглощенный, то можно получить соотношение, аналогичное закону Бугера—Ламберта—Бера для поглощения света растворами

   

где D — оптическая плотность раствора; t— коэффициент мутности раствора; l — толщина поглощающего слоя раствора; kэмпирическая константа; С — концентрация.

Так как поглощения света в данном случае практически не происходит, то в отличие от светопоглощения А, используют оптическую плотность D, которая может быть измерена на фотоэлектроколориметре. Коэффициент мутности раствора аналогичен коэффициенту поглощения в законе Бугера—Ламберта—Бера. Коэффициент мутности — это величина, обратная толщине такого поглощающего слоя, которая уменьшает интенсивность падающего светового потока в 10 раз, измеряется в см-1.

В нефелометрии измеряют интенсивность света, рассеянного дисперсной системой. Способность частиц к рассеянию или отражению света определяется размером частиц и длиной волны падающего света. Интенсивность светового потока, рассеянного дисперсными частицами, определяется уравнением Рэлея:

   

где F - функция от показателей преломления частиц и среды; N - общее число частиц; V - объем частиц; λ - длина волны падающего света; R - расстояние от детектора; θ - угол рассеяния.

Эта закономерность перестает выполняться, если размеры частиц приближаются к длине волны падающего света.

Если необходимо определить только размер частиц и их концентрацию, то достаточно измерить интенсивность рассеянного света под одним углом (обычно под углом 90° по отношению к падающему потоку).

В нефелометрическом методе градуировочный график может быть построен в координатах "I0 - С". Этот метод по сравнению с турбидиметрией более высокочувствителен, что объясняется прямым измерением аналитического сигнала. Нефелометрия позволяет определять не только концентрации и размер частиц в золях, но и их форму, характер взаимодействия и другие параметры.

В соответствии с уравнением Рэлея мутность, используемую в турбидиметрическом анализе, можно выразить как

   

Отсюда следует, что отношение оптических плотностей для двух дисперсных систем малорастворимых веществ с одинаковым размером частиц, равно отношению концентраций, а при одной и той же концентрации отношение оптических плотностей пропорционально размерам частиц. В турбидиметрическом анализе размер частиц не имеет такого значения, как в нефелометрии. Однако, если дисперсная система содержит частицы размером более 0,1λ, появляются отклонения от закона Рэлея, что приводит к нарушению линейности градуировочного графика. Воспроизводимость результатов при определении веществ турбидиметрическим методом составляет 5%.

Для осуществления турбидиметрического и нефелометрического методов анализа ионы определяемого элемента или определяемое вещество переводят в малорастворимое соединение, способное образовывать относительно устойчивую дисперсную систему в начальный период формирования осадка. Этим условиям удовлетворяют реакции SO42- с Ва2+, Сl - с Ag+, C2O42- с Са2+ и другие.

Для аналитических целей пригодны наименее растворимые в воде осадки. Формирование осадка, удобного для количественного определения, в значительной степени зависит от условий осаждения: температуры, концентрации реагирующих веществ, рН, скорости добавления реактива и др. Осадок образуется в том случае, когда исходный раствор становится пересыщенным по отношению к твердой фазе, т. е. выполняется условие:

+][А-] > ПРМА

где [М+], [А-] - концентрации ионов в растворе; ПРМА - произведение растворимости.

Как известно, при кристаллизации в системе сначала возникают мельчайшие частицы твердой фазы — зародыши, затем происходит рост кристаллов. Согласно термодинамической теории образования кристаллических зародышей изолированная система абсолютно устойчива (стабильна), если при любом конечном изменении ее состояния (при постоянстве энергии) ее энтропия остается неизменной (или уменьшается). Система относительно устойчива (метастабильна), если при некоторых конечных изменениях ее состояния энтропия возрастает. Примером метастабильной системы является пересыщенный раствор, энтропия которого возрастает на конечное значение при кристаллизации. В лабильной (пересыщенной) области происходит спонтанное зародышеобразование. В турбидиметрии необходима агрегативная устойчивость дисперсной системы. Под устойчивостью дисперсной системы понимают постоянство ее свойств во времени, в первую очередь дисперсности и распределения частиц по объему, устойчивости к отделению раствора от осадка, к межчастичному взаимодействию.

В реальных условиях агрегативная устойчивость системы определяется факторами не только термодинамического, но и кинетического характера (столкновение частиц, диффузия, электростатическое взаимодействие, возникновение двойного электрического слоя на межфазной границе и др.). На практике межфазное взаимодействие устраняют введением в исходные растворы реагентов сильного электролита, скорость коагуляции снижают увеличением вязкости среды.

Добиться воспроизводимости всех этих условий, обеспечивающих стабильность фазы во времени, непросто. Поэтому возникла идея использовать в аналитических целях не результат аналитической реакции осаждения, а сам процесс образования дисперсной фазы, т. е. используется кинетический подход.

Формирование дисперсной системы происходит во времени, скорость ее образования зависит от концентрации ионов, образующих малорастворимое соединение. Метод, используемый для измерения мутности во времени, получил название турбидиметрического кинетического метода. При кинетическом методе для определения компонента измеряют скорость реакции (dx/dt), которая в начальный момент протекания реакции описывается уравнением:

    

где к - константа скорости реакции; [В]о, [С]о - начальные концентрации реагента и анализируемого вещества; х - концентрация промежуточного вещества или продукта реакции, по которому определяют скорость реакции.

Обычно измеряют скорость реакции в начальный момент, когда концентрация образующегося продукта мала, что нивелирует протекание обратной реакции, побочные реакции минимальны, а концентрации анализируемого компонента Со и реагента Во заметно не меняются. Следовательно, в этих условиях реакция протекает как реакция псевдонулевого порядка и уравнение принимает вид

    

Начальную скорость реакции обычно определяют, применяя метод фиксирования времени или метод фиксированной концентрации. Принцип метода фиксированной концентрации заключается в измерении времени ( или ), необходимого для достижения фиксированного изменения состава (∆х). Интегрируя уравнение, получим

Значение  пропорционально концентрации анализируемого компонента [С]о при постоянных к, [В]о и ∆х ([В]о << [С]о, ∆х — предельно мало).

Преобразуем это уравнение

    

Измеряя поглощение раствора, связанное пропорциональной зависимостью с концентрацией, определяют содержание анализируемого компонента. Обычно процесс осаждения в начальной стадии реакции не осложнен побочными явлениями, поэтому оптимальным является фиксирование скорости образования осадка как функции от концентрации определяемого компонента на данной стадий реакции.

Таким образом, кинетические методы анализа, основанные на использовании реакций осаждения, имеют преимущество перед обычными нефелометрическим и турбидиметрическим методами, так как для них не имеет значения полнота протекания реакции. Поэтому реакцию можно проводить в растворах сильных электролитов и кислот, что позволяет также нивелировать влияние мешающих ионов.

Практическая часть.

В работе используют реакцию образования тонкодисперсной системы малорастворимого в азотнокислых растворах хлорида серебра (ПР = 1,78 ∙ 10-10). Для обеспечения избирательности определения реакцию проводят при рН = 1. Комплексообразователи препятствуют образованию осадка AgCl и потому мешают определению.

Экспериментальная часть.

Приборы и реактивы:

Фотоэлектроколориметр ФЭК-М, ФЭК-56М и др.

Раствор хлорида калия, содержащий Сl-   0,1 мг/мл.

Рабочий раствор хлорида калия, содержащий Сl- 0,01 мг/мл; готовят разбавлением исходного раствора КСl.

Азотная кислота, 25%-ный раствор.

Раствор нитрата серебра, 0,1 М.

Выполнение работы.

Построение градуировочного графика.

 В пять мерных колб вместимостью 100 мл вносят 2; 5; 10; 15; 20 мл рабочего раствора хлорида калия, что соответствует 0,02; 0,05; 0,1; 0,15; 0,20 мг хлорид-иона. В каждую колбу приливают по 2 мл раствора HNO3 и дистиллированную воду до объема 80 мл. Затем вводят по 1 мл раствора нитрата серебра, перемешивают, доводят объем раствора дистиллированной водой до метки, тщательно перемешивают и оставляют в темном месте на 20 мин. Измеряют оптическую плотность стандартных растворов по отношению к раствору сравнения; измерения начинают с раствора с наименьшей концентрацией Сl-. Используют кюветы с толщиной поглощающего слоя 50 мм и синий светофильтр. Строят градуировочный график в координатах "оптическая плотность — концентрация хлорид-ионов в растворе".

Определение содержания Сl- в растворе.

Из пробы анализируемого раствора в мерной колбе вместимостью 100 мл готовят, как указано выше, суспензию и трижды измеряют ее оптическую плотность. По средним значениям оптической плотности, пользуясь градуировочным графиком, находят концентрацию Сl- в исследуемом растворе.

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

53665. Спорт 54 KB
  Cricket is a popular British game. It is often played in schools, colleges, universities, and by club teams all over the country. Cricket is a typically English sport which foreigners cannot understand. Men and boys, women and girls play cricket.
53666. Помни твёрдо, что режим людям всем необходим 42 KB
  Показ презентации и объяснение учителя Каким же должен быть режим дня школьника Слайд 1.20 утренняя гимнастика слайд 2 водные процедуры слайд 3.40 завтрак слайд 4.00 дорога в школу слайд 5.
53667. Контрольная работа по теме «Сложение и вычитание десятичных дробей» 76.5 KB
  Задачи: Обучающие: Выявить уровень сформированности умений учащихся применять правила сложения и вычитания округления и сравнения десятичных дробей в процессе выполнения заданий контрольной работы. Выявить уровень сформированности умений применять правила округления и сравнения десятичных дробей при решении контрольной работы. Развивающие: Развитие мышления и долгосрочной памяти в процессе выполнения контрольной работы. Оборудование: карточки с заданиями Тип урока: контроль знаний и умений учащихся Вид урока: урок контрольная...
53668. Shopping for clothes 55.5 KB
  Boys usually wear shorts, shirts, jeans, trousers, trainers, sweaters, coats, scarves, caps and boots. Girls usually wear dresses, shoes, jeans, trainers, coats, scarves, sweaters, mittens, hats, boots.
53669. Baby Elephant and his new clothes 56.5 KB
  All children like to play games. Now I want you to divide into two teams. Each team will have the cards with the words. You must put the words in the logical order to make a chain.
53671. Consolidation. Generalization 50 KB
  Now we are going to revise some rules about quantifiers. You know that quantity can be expressed not only by numbers – one, two, three or the first, the second etc; but also with special words. And we should remember these words.
53672. Конспект урока по баскетболу 53.5 KB
  Совершенствовать остановку прыжком Развивающие: развивать координационные способности с помощью эстафет Воспитательные: командный дух с помощью эстафет Части урока Частные задачи Средства Дозировка Методические указания Команды Форма проведения Подготовительная Организованно начать урок Построение 2мин Следить за дисциплиной Следить за слаженностью выполнения строевых упражнений за осанкой...
53673. Конспект урока по баскетболу в 7 классе 47 KB
  Ноги не сгибать Задняя нога прямая Равняйсь Смирно Вольно На носках марш На пятках марш На внешней стороне стопы марш На внутренней стороне стопы марш Бегом марш Бег с высоким поднимание колена марш Бег спиной вперед марш Противоходом марш Змейкой марш Шагом марш На месте шагом марш Стой раз два Фронтальная Основная 2025мин Совершенствование скорости реакции посредством игры в баскетбол Разделить на 2 команды. Однако тот не может начать эстафету пока предыдущий игрок не пересечет стартовую...