11896

Определение хлоридов в растворе

Лабораторная работа

Химия и фармакология

Лабораторная работа №113 Определение хлоридов в растворе. Краткое теоретическое введение: Фототурбидиметрия и фотонефелометрия основаны на явлении рассеяния света дисперсными системами суспензиями или золями получаемыми в результате аналитических реакций. П...

Русский

2013-04-14

68 KB

4 чел.

Лабораторная работа №113

Определение хлоридов в растворе.

Краткое теоретическое введение:

Фототурбидиметрия и фотонефелометрия основаны на явлении рассеяния света дисперсными системами — суспензиями или золями, получаемыми в результате аналитических реакций. При прохождении света через дисперсную гетерогенную систему, какой является взвесь малорастворимого вещества в момент образования, происходит ослабление светового потока в результате рассеивания и поглощения его частицами дисперсной фазы:

где  - интенсивности падающего, поглощаемого, рассеянного и прошедшего световых потоков, соответственно.

Это явление и использовано в турбидиметрических и нефелометрических методах для качественной и количественной оценки малорастворимых соединений.

В турбидиметрии измеряют интенсивность светового потока, прошедшего через дисперсную систему. Если принять рассеянный свет за фиктивно поглощенный, то можно получить соотношение, аналогичное закону Бугера—Ламберта—Бера для поглощения света растворами

   

где D — оптическая плотность раствора; t— коэффициент мутности раствора; l — толщина поглощающего слоя раствора; kэмпирическая константа; С — концентрация.

Так как поглощения света в данном случае практически не происходит, то в отличие от светопоглощения А, используют оптическую плотность D, которая может быть измерена на фотоэлектроколориметре. Коэффициент мутности раствора аналогичен коэффициенту поглощения в законе Бугера—Ламберта—Бера. Коэффициент мутности — это величина, обратная толщине такого поглощающего слоя, которая уменьшает интенсивность падающего светового потока в 10 раз, измеряется в см-1.

В нефелометрии измеряют интенсивность света, рассеянного дисперсной системой. Способность частиц к рассеянию или отражению света определяется размером частиц и длиной волны падающего света. Интенсивность светового потока, рассеянного дисперсными частицами, определяется уравнением Рэлея:

   

где F - функция от показателей преломления частиц и среды; N - общее число частиц; V - объем частиц; λ - длина волны падающего света; R - расстояние от детектора; θ - угол рассеяния.

Эта закономерность перестает выполняться, если размеры частиц приближаются к длине волны падающего света.

Если необходимо определить только размер частиц и их концентрацию, то достаточно измерить интенсивность рассеянного света под одним углом (обычно под углом 90° по отношению к падающему потоку).

В нефелометрическом методе градуировочный график может быть построен в координатах "I0 - С". Этот метод по сравнению с турбидиметрией более высокочувствителен, что объясняется прямым измерением аналитического сигнала. Нефелометрия позволяет определять не только концентрации и размер частиц в золях, но и их форму, характер взаимодействия и другие параметры.

В соответствии с уравнением Рэлея мутность, используемую в турбидиметрическом анализе, можно выразить как

   

Отсюда следует, что отношение оптических плотностей для двух дисперсных систем малорастворимых веществ с одинаковым размером частиц, равно отношению концентраций, а при одной и той же концентрации отношение оптических плотностей пропорционально размерам частиц. В турбидиметрическом анализе размер частиц не имеет такого значения, как в нефелометрии. Однако, если дисперсная система содержит частицы размером более 0,1λ, появляются отклонения от закона Рэлея, что приводит к нарушению линейности градуировочного графика. Воспроизводимость результатов при определении веществ турбидиметрическим методом составляет 5%.

Для осуществления турбидиметрического и нефелометрического методов анализа ионы определяемого элемента или определяемое вещество переводят в малорастворимое соединение, способное образовывать относительно устойчивую дисперсную систему в начальный период формирования осадка. Этим условиям удовлетворяют реакции SO42- с Ва2+, Сl - с Ag+, C2O42- с Са2+ и другие.

Для аналитических целей пригодны наименее растворимые в воде осадки. Формирование осадка, удобного для количественного определения, в значительной степени зависит от условий осаждения: температуры, концентрации реагирующих веществ, рН, скорости добавления реактива и др. Осадок образуется в том случае, когда исходный раствор становится пересыщенным по отношению к твердой фазе, т. е. выполняется условие:

+][А-] > ПРМА

где [М+], [А-] - концентрации ионов в растворе; ПРМА - произведение растворимости.

Как известно, при кристаллизации в системе сначала возникают мельчайшие частицы твердой фазы — зародыши, затем происходит рост кристаллов. Согласно термодинамической теории образования кристаллических зародышей изолированная система абсолютно устойчива (стабильна), если при любом конечном изменении ее состояния (при постоянстве энергии) ее энтропия остается неизменной (или уменьшается). Система относительно устойчива (метастабильна), если при некоторых конечных изменениях ее состояния энтропия возрастает. Примером метастабильной системы является пересыщенный раствор, энтропия которого возрастает на конечное значение при кристаллизации. В лабильной (пересыщенной) области происходит спонтанное зародышеобразование. В турбидиметрии необходима агрегативная устойчивость дисперсной системы. Под устойчивостью дисперсной системы понимают постоянство ее свойств во времени, в первую очередь дисперсности и распределения частиц по объему, устойчивости к отделению раствора от осадка, к межчастичному взаимодействию.

В реальных условиях агрегативная устойчивость системы определяется факторами не только термодинамического, но и кинетического характера (столкновение частиц, диффузия, электростатическое взаимодействие, возникновение двойного электрического слоя на межфазной границе и др.). На практике межфазное взаимодействие устраняют введением в исходные растворы реагентов сильного электролита, скорость коагуляции снижают увеличением вязкости среды.

Добиться воспроизводимости всех этих условий, обеспечивающих стабильность фазы во времени, непросто. Поэтому возникла идея использовать в аналитических целях не результат аналитической реакции осаждения, а сам процесс образования дисперсной фазы, т. е. используется кинетический подход.

Формирование дисперсной системы происходит во времени, скорость ее образования зависит от концентрации ионов, образующих малорастворимое соединение. Метод, используемый для измерения мутности во времени, получил название турбидиметрического кинетического метода. При кинетическом методе для определения компонента измеряют скорость реакции (dx/dt), которая в начальный момент протекания реакции описывается уравнением:

    

где к - константа скорости реакции; [В]о, [С]о - начальные концентрации реагента и анализируемого вещества; х - концентрация промежуточного вещества или продукта реакции, по которому определяют скорость реакции.

Обычно измеряют скорость реакции в начальный момент, когда концентрация образующегося продукта мала, что нивелирует протекание обратной реакции, побочные реакции минимальны, а концентрации анализируемого компонента Со и реагента Во заметно не меняются. Следовательно, в этих условиях реакция протекает как реакция псевдонулевого порядка и уравнение принимает вид

    

Начальную скорость реакции обычно определяют, применяя метод фиксирования времени или метод фиксированной концентрации. Принцип метода фиксированной концентрации заключается в измерении времени ( или ), необходимого для достижения фиксированного изменения состава (∆х). Интегрируя уравнение, получим

Значение  пропорционально концентрации анализируемого компонента [С]о при постоянных к, [В]о и ∆х ([В]о << [С]о, ∆х — предельно мало).

Преобразуем это уравнение

    

Измеряя поглощение раствора, связанное пропорциональной зависимостью с концентрацией, определяют содержание анализируемого компонента. Обычно процесс осаждения в начальной стадии реакции не осложнен побочными явлениями, поэтому оптимальным является фиксирование скорости образования осадка как функции от концентрации определяемого компонента на данной стадий реакции.

Таким образом, кинетические методы анализа, основанные на использовании реакций осаждения, имеют преимущество перед обычными нефелометрическим и турбидиметрическим методами, так как для них не имеет значения полнота протекания реакции. Поэтому реакцию можно проводить в растворах сильных электролитов и кислот, что позволяет также нивелировать влияние мешающих ионов.

Практическая часть.

В работе используют реакцию образования тонкодисперсной системы малорастворимого в азотнокислых растворах хлорида серебра (ПР = 1,78 ∙ 10-10). Для обеспечения избирательности определения реакцию проводят при рН = 1. Комплексообразователи препятствуют образованию осадка AgCl и потому мешают определению.

Экспериментальная часть.

Приборы и реактивы:

Фотоэлектроколориметр ФЭК-М, ФЭК-56М и др.

Раствор хлорида калия, содержащий Сl-   0,1 мг/мл.

Рабочий раствор хлорида калия, содержащий Сl- 0,01 мг/мл; готовят разбавлением исходного раствора КСl.

Азотная кислота, 25%-ный раствор.

Раствор нитрата серебра, 0,1 М.

Выполнение работы.

Построение градуировочного графика.

 В пять мерных колб вместимостью 100 мл вносят 2; 5; 10; 15; 20 мл рабочего раствора хлорида калия, что соответствует 0,02; 0,05; 0,1; 0,15; 0,20 мг хлорид-иона. В каждую колбу приливают по 2 мл раствора HNO3 и дистиллированную воду до объема 80 мл. Затем вводят по 1 мл раствора нитрата серебра, перемешивают, доводят объем раствора дистиллированной водой до метки, тщательно перемешивают и оставляют в темном месте на 20 мин. Измеряют оптическую плотность стандартных растворов по отношению к раствору сравнения; измерения начинают с раствора с наименьшей концентрацией Сl-. Используют кюветы с толщиной поглощающего слоя 50 мм и синий светофильтр. Строят градуировочный график в координатах "оптическая плотность — концентрация хлорид-ионов в растворе".

Определение содержания Сl- в растворе.

Из пробы анализируемого раствора в мерной колбе вместимостью 100 мл готовят, как указано выше, суспензию и трижды измеряют ее оптическую плотность. По средним значениям оптической плотности, пользуясь градуировочным графиком, находят концентрацию Сl- в исследуемом растворе.

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

25969. Аудит учредительных документов и формирования уставного капитала 29 KB
  При этом следует знать что для достижения этой цели аудиторами должны быть решены следующие задачи: определение юридического статуса предприятия сферы деятельности прав его функционирования; установление наличия лицензии по видам деятельности подлежащих лицензированию; проверка порядка формирования и изменения уставного складочного капитала и изучение его структуры. При проверке учредительных документов и формирования уставного капитала необходимо руководствоваться следующими основными нормативными документами: Гражданским кодексом часть...
25970. Аудиторская выборка 51.5 KB
  Аудиторская выборка дает возможность аудитору получить и оценить аудиторские доказательства в отношении некоторых характеристик элементов отобранных для того чтобы сформировать или помочь сформировать выводы касающиеся генеральной совокупности из которой произведена выборка; При разработке процедур аудита аудиторская организация или индивидуальный аудитор должны определить надлежащие методы отбора элементов подлежащих проверке при сборе аудиторских доказательств для достижения целей аудиторских тестов. Риск связанный с использованием...
25971. Аудиторская проверка финансовой (бухгалтерской) отчетности экономического субъекта 40.5 KB
  Цель аудита финансовых результатов и распределения прибыли установление достоверности отражения в учете и отчетности прибылей и убытков предприятия законности распределения и использования прибыли остающейся в распоряжении предприятия после налогообложения. Основными задачами данного вида аудита являются: оценка соответствия бухгалтерской финансовой отчетности данным синтетического и аналитического учета составляющих конечного финансового результата; подтверждение соответствия оформленных предприятием бухгалтерских операций...
25972. Сущность аудиторских доказательств 37 KB
  Аудитор в процессе проверки должен получить достаточную и достоверную информацию свидетельства доказательства которая подтвердит что бухгалтерская финансовая отчетность отражает финансовое положение предприятия а также что она составлена в соответствии стандартов и законодательству РФ. Отнести к аудиторским доказательствам можно: первичные документы; бухгалтерские записи; полученная из других источников информация. Оценить количественную меру доказательств достаточность и качественную меру смысловой нагрузки доказательства к...
25973. Аудиторские процедуры 29.5 KB
  Собирая доказательства аудиторы используют следующие процедуры: проверку арифметических расчетов клиента в зависимости от плана аудиторской проверки оценки системы внутреннего контроля и риска аудиторского она может быть выборочной или сплошной; наблюдение или участие в инвентаризации различных активов клиента инвентаризация в данном случае рассматривается как метод получения ценных и достоверных доказательств о реальности и точности активных статей баланса и фактов совершения хозяйственных операций; наблюдение за выполнением отд. Для...
25974. Аудиторский риск. Анализ компонентов риска 35 KB
  Анализ компонентов риска Аудит базирующийся на риске это такой вид аудита когда проверка может производиться выборочно исходя из условий работы предприятия в основном узких мест критических точек в его работе. Сосредоточив аудиторскую работу в областях где риски выше можно сократить время затрачиваемое на проверку областей с низким риском. С проведением аудита непосредственно связаны следующие виды риска: предпринимательский и аудиторский.
25975. Аудиторское заключение 35 KB
  Аудиторское заключение официальный документ предназначенный для пользователей бухгалтерской финансовой отчетности аудируемых лиц содержащий выраженное в установленной форме мнение аудиторской организации индивидуального аудитора о достоверности бухгалтерской финансовой отчетности аудируемого лица. Заключение аудиторской организации по результатам проверки годовой отчетности является неотъемлемым элементом годовой бухгалтерской отчетности для предприятий подлежащих в соответствии с действующим законодательством обязательному аудиту....
25976. Аудит сохранности и учета производственных запасов 58.5 KB
  Целью аудита МПЗ является формирование мнения о достоверности показателей отчетности по статьям материальных ценностей «Запасы» и о соответствии применяемой в организации методики учета и налогообложения, действующим в Российской Федерации нормативным документам.