11916

Определение отношения заряда электрона к массе методом магнетрона

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лабораторная работа № 12 Определение отношения заряда электрона к массе методом магнетрона. Цель работы: Цель работы: Изучение движения электронов во взаимно перпендикулярных электрическом и магнитном полях в магнетроне определение по параметрам этого движен

Русский

2013-04-14

569.5 KB

314 чел.

Лабораторная работа № 12

Определение отношения заряда электрона к массе методом магнетрона.

Цель работы:

  Цель работы: Изучение движения электронов во взаимно перпендикулярных электрическом и магнитном полях в магнетроне, определение по параметрам этого движения отношения заряда электрона к его массе.

Приборы и оборудование:

1. Модуль «ФПЭ-03».

2. Постоянное оборудование: источник питания «ИП», два цифровых вольтметра.

Теоретическая часть

1. Качественное описание движения

  Если в пространстве одновременно существуют электрическое и магнитное поля, то на движущийся электрон будет действовать результирующая сила, представляющая собой суперпозицию кулоновской и лоренцовой сил:

F=e*E+e*v x B,                    (12.1)

где е –  заряд электрона (е < 0), Е –  напряженность электрического

поля, В –  магнитная индукция, V – скорость электрона.

  В зависимости от конфигурации электрического и магнитного полей движение электрона под действием силы F происходит по траектории, которая приводит к эффекту поддержания или отсутствия электрического тока в некоторой цепи. Существуют различные методы определения удельного заряда электрона. Одним из них является метод магнетрона. Название метода происходит от сходства конфигураций электрического и магнитного полей в нем и в магнетронах - генераторах электромагнитных полей сверхвысоких частот.

Сущность метода состоит в следующем. Специальная двухэлектродная лампа с коаксиальными цилиндрическими катодом и анодом помещается в магнитное поле так, что ось симметрии лампы направлена вдоль магнитного поля (вдоль вектора магнитной

индукции. В отсутствие магнитного поля вылетевшие из катода электроны движутся радиально в направлении анода.

При наличии поля на электроны кроме электрической начинает действовать еще и магнитная сила Лоренца, направленная перпендикулярно вектору скорости электрона, вследствии чего траектория электронов искривляется. На рис.12.2 изображено промежуточное положение электрона в декартовой и полярной системах координат. Там же указано направление мгновенной скорости электрона V, а так же радиус-вектор r точки наблюдения.

Если магнитная сила сравнительно мала, то под действием ускоряющего электрического поля в межэлектродном пространстве электрон достигает анода. По мере увеличения

индукции магнитного поля траектория электрона все более

искривляется. При достижении некоторого критического значения поля Вкр электрон, вылетевший вдоль оси х, не попадает на анод, а возвратится на катод по симметричной относительно оси х траектории. При значении индукции поля В > Вкр все электроны вернутся на катод, т.к. их траектории имеют большую кривизну Эта критическая ситуация соответствует сильному ослаблению тока в цепи диода (на рис.12.4 кривая изображена штриховой линией). В случае многоэлектронного приближения качественная картина сохраняется. В связи с тем, что электроны из катода выходят с разными скоростями, часть из них при В > Вкр все-таки достигнет анода.

2. Аналитическое описание движения

  Уравнение движения для электрона в декартовых координатах таковы:

  Удобнее, однако, рассматривать движение электрона в цилиндрических координатах, где независимыми переменными будут радиус-вектор r и угол поворота O электрона. Для этого используются известные соотношения между координатами:


 После подстановки (1.4) в (1.2) и некоторых преобразований,  уравнение движения принимает вид

Интегрирование этого уравнения с учетом начальных условий движения электрона приводит к соотношению

где rk - радиус катода.

  Так как напряженность электрического поля вблизи поверхности катода наибольшая, то можно считать, что уже у поверхности катода электрон приобретает максимальную скорость и поэтому в остальной части межэлектродного пространства он движется с почти

постоянной скоростью. Как показывает анализ, в таком случае большая часть траектории электрона будет близка к окружности, и движение по ней будет происходить с угловой скоростью. Период вращения электрона по такой траектории определяется известным соотношением:

и зависит только от величины магнитного поля В.

  Еще раз повторим, что в случае многоэлектронного приближения, вследствие разброса начальных скоростей электронов, а также некоторой неэквипотенциальности поверхности катода вдоль его длины и возможной асимметрии расположения электродов лампы,

«отсечка» тока в лампе при UA = const происходит в некотором интервале значений В (рис.12.4).

Рассмотрим движение электрона по критической траектории (B = Вкр). В этом случае радиальная составляющая r скорости электрона в точке поворота при rmax = rA равна нулю. Однако тангенциальная (линейная) составляющая скорости электрона отлична от нуля и приближенно равна

где O - угловая скорость вращательного движения электрона (по окружности).

  Так как электрон движется в потенциальном электрическом поле, а сила Лоренца не совершает работы, то полная энергия электрона постоянна. Для критической траектории имеем:

Подставляя в (12.10) выражение для О из соотношения (12.6) получим:

  Это и есть основное выражение для экспериментального определения величины е/m.

  Величина индукции магнитного поля соленоида, учитывая, что его длина L соизмерима с диаметром D, вычисляется по формуле

  Таким образом, по экспериментальному значению Вкр можно вычислить по формуле (12.11) величину е/m.

Описание работы:

Для определения Bкр на анод лампы следует подать ускоряющее напряжение UА и, включив ток Iс в соленоиде, постепенно увеличивать его, тем самым увеличивая магнитное поле в объеме лампы. Измерив зависимость IA =f(Iс) при некотором значении UА = const, адекватную зависимости IA =f(B),на графике определяют точку наиболее крутого спада тока лампы (точку перегиба кривой), которую и считают соответствующей критической ситуации.  

 

Рис.12.5. Электрическая схема экспериментальной установки.

Результаты измерений

IC

IA

110 В

115 В

120 В

0.4

11.945

12,486

12,986

0.5

11.883

12,532

12,946

0.6

11.746

12,462

12,892

0.7

11.467

12,354

12,731

0.8

11.110

12,158

12,546

0.9

10.649

11,790

12,305

1.0

8.342

10,241

10,777

1.1

6.765

8,518

8,390

1.2

5.728

6,826

7,208

1.3

5.004

6,031

6,391

1.4

4.647

5,020

5,281

1.5

3.937

4,907

4,957

1.6

3.540

3,661

3,824

1.7

3.096

3,577

3,691

1.8

2.863

3,244

3,377

1.9

2.536

2,931

3,108

2.0

2.374

2,636

2,748

2.1

2.164

2,459

2,596

2.2

2.042

2,336

2,422

2.3

1.991

2,198

2,287

2.4

1.928

2,127

2,218

2.5

1.859

2,084

2,187

Расчеты

Графики зависимости анодного тока от тока соленоида.

Расчет индукции магнитного поля при критических значениях тока в соленоиде.

Расчетная формула:

Данные подставленные в формулу и результат:

m

0,0000004

0,0000004

0,0000004

N

2550

2550

2550

Iкр

5,9

7,2

7,4

L

0,168

0,168

0,168

D

0,058

0,058

0,058

Результат

Вкр

0,0339

0,0413

0,0425

Вычисление величины е/m для каждого значения критического поля в соленоиде

Расчетная формула:

Данные подставленные в формулу и результат:

UA

110

115

120

rA

0,005

0,005

0,005

rR

0,0005

0,0005

0,0005

Вкр

0,0339

0,0413

0,0425

Результат

e/m

31324924781

21990455359

21722968955

е/m среднее

(e/m)ср=25012783031

Расчет погрешностей

Определение погрешности Iкр:

U

Iкр

|DIкр|

|DIкр|^2

S(DIкр)^2

S/N(N-1)

s

110

5,9

0,9

0,81

 

 

115

7,2

0,4

0,16

1,33

0,22167

0,4708

120

7,4

0,6

0,36

 

 

 

Коэффициент Стьюдента для 3 опытов при доверительной вероятности 95% равен 4,30

DIкр=

2,024504054

Погрешность измерения U равняется половине цены деления вольтметра:

DUА=

0,5

Определение погрешности Bкр:

Bкр.ср.

0,0392

Iкр.ср.

6,83

DBкр=

0,0116

Определение погрешности e/m:

UAср

115

0,419010035

= 42%

D(e/m)=

10480607088

(e/m)ср=

25012783031

±

10480607088

ВЫВОД:

В результате эксперимента были получены данные для расчета магнитной индукции и e/m .

Мы получили значение (e/m)ср=25012783031.

Погрешность составила приблизительно 42%, что указывает на неточность проведения измерений или плохое состояние оборудования для опытов.


 

А также другие работы, которые могут Вас заинтересовать

47615. Организационно-экономическое обоснование научных и технических разработок 481 KB
  Техническое нормирование Расчет количества оборудования и производственных площадей. Организация труда на участке Организация ремонта оборудования. Расчет и составление сметы расходов на содержание и эксплуатацию оборудования. Расчёт количества оборудования и производственных площадей...
47617. ГРУЗОВЫЕ ПЕРЕВОЗКИ 1.82 MB
  Результаты расчетов производственной программы по эксплуатации необходимо свести в таблицу. Результаты расчетов необходимо свести в таблицу. Цель работы: найти кратчайшие расстояния между пунктами транспортной сети и заполнить ими соответствующую таблицу; найти кратчайшие пути проезда между пунктами и отразить их на соответствующем рисунке.
47618. Измерение сопротивлений изоляции и защитного заземления. Методические указания 898 KB
  Измерение сопротивлений изоляции и защитного заземления: методические указания к лабораторной работе составители Лустгартен Т. В методических указаниях содержатся краткие теоретические сведения об измерении сопротивления изоляции и защитного заземления методика измерения сопротивления. преподаватель Рассмотрено и рекомендовано к изданию редакционноиздательским советом КГТУ Костромской государственный технологический университет 2009 Введение Для безопасной и безаварийной работы электроустановок промышленных предприятий...
47619. Исследование параметров вибрации. Методические указания 951.5 KB
  Букалов ИССЛЕДОВАНИЕ ПАРАМЕТРОВ ВИБРАЦИИ Методические указания к выполнению лабораторной работы Кострома 2008 УДК 677 Сусоева И. Исследование параметров вибрации И. Лабораторная работа Исследование параметров вибрации соответствует учебным планам по дисциплине Безопасность жизнедеятельности для студентов вузов всех специальностей и факультетов. Требования безопасности во время работы Включать источник вибрации только после полного уяснения порядка работы с прибором и только на время замеров.
47620. UML Основы. Краткое руководство 20.23 MB
  В книге описаны все главные типы диаграмм UML, рассказано, для чего они предназначены и какие нотации применяются при их создании и чтении. Это диаграммы классов, последовательности, объектов, пакетов, развертывания, прецедентов, состояний, деятельности, составных структур, компонентов, обзора взаимодействия, коммуникационные и временные
47621. МАТЕМАТИЧНІ МЕТОДИ ДОСЛІДЖЖЕННЯ ОПЕРАЦІЙ. НАВЧАЛЬНИЙ ПОСІБНИК 831 KB
  Ускладнення процесів управління сучасним підприємством та необхідність оперативного реагування на зміни зовнішніх факторів, що впливають на діяльність підприємства, вимагають застосування математичних методів, зокрема методів дослідження операцій, динамічного програмування, сіткового планування і управління, для обґрунтування економічної ефективності управлінських рішень, що приймаються
47622. Проектирование и создание базы данных в MS Access 684 KB
  Проектирование и создание базы данных в MS ccess. Учебное пособие предназначено для изучения раздела информатики по теме Системы управления базами данных студентами экономических специальностей. Настоящее пособие является первым этапом в изучении этого материала здесь изложены основные понятия и терминология этой области этапы проектирования и разработки баз данных реляционного типа создание структуры и заполнение баз данными.
47623. Методичні вказівки. Теорія автоматичного керування 283 KB
  Включают работы по исследованию объектов управления методами активного эксперимента а также исследованию влияния различных параметров автоматических систем управления на их качественные показатели. ЛАБОРАТОРНАЯ РАБОТА 1 ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ СТАТИЧЕСКОЙ ХАРАКТЕРИСТИКИ И КРИВОЙ РАЗГОНА ОБЪЕКТА УПРАВЛЕНИЯ 1. ЦЕЛЬ И ЗАДАЧИ РАБОТЫ Студенты должны изучить методику экспериментального определения и обработки статических характеристик и кривых разгона объектов управления. На основании результатов эксперимента определить параметры...