11931

Определение удельного сопротивления проводников

Лабораторная работа

Физика

ЛАБОРАТОРНАЯ РАБОТА № 4 Определение удельного сопротивления проводников Цель работы: изучить основные электрические свойства проводниковых материалов и их характеристики. ПРОГРАММА РАБОТЫ 1. Ознакомиться с образцами проводниковых материалов. 2. Изучить осн...

Русский

2013-04-14

120 KB

192 чел.

ЛАБОРАТОРНАЯ РАБОТА № 4

Определение удельного сопротивления проводников

Цель работы: изучить основные электрические свойства проводниковых материалов и их характеристики.

ПРОГРАММА РАБОТЫ

1. Ознакомиться с образцами проводниковых материалов.

2. Изучить основные электрические свойства проводниковых материалов.

3. Определить удельное электрическое сопротивление различных проводниковых материалов при комнатной температуре.

4. Сравнить полученные результаты со справочными данными.

5. Оформить отчет.

Основные теоретические положения

Проводниками электрического тока в соответствии с терминами и определениями ГОСТ Р 52002-2003 называют вещества, основными электрическими свойствами которых является высокая электропроводность. Их удельное сопротивление при нормальной температуре лежит в пределах от 0,016 до 100 мкОм·м. Эти материалы используют для изготовления токоведущих частей электроустановок. Чаще всего в качестве проводников электрического тока используют твердые тела, реже − жидкости и газы в ионизированном состоянии.

Механизм прохождения тока в металлах − как в твердом, так и в жидком состоянии − обусловлен направленным движением (дрейфом) свободных электронов под воздействием электрического поля; поэтому металлы называют проводниками с электронной электропроводностью или проводниками первого рода.

Важнейшими твердыми проводниковыми материалами, применяемыми в электротехнике, являются металлы и их сплавы.

Классификация металлических проводников. Металлические проводниковые материалы подразделяются на следующие основные группы.

Металлы высокой проводимости, имеющие удельное сопротивление р при нормальной температуре не более 0,05 мкОм·м. Металлы высокой проводимости используются для изготовления проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов.

Сверхпроводники − это материалы (чистые металлы и сплавы), удельное сопротивление которых при весьма низких температурах, близких к абсолютному нулю, скачком уменьшается до ничтожно малой величины.

Высокотемпературные сверхпроводники (ВТСП) − это проводники, имеющие температуру перехода в сверхпроводящее состояние выше 30 К.

Криопроводники − это металлические проводники высокой проводимости, удельное сопротивление которых плавно снижается при понижении температуры и при криогенных температурах (T<−195 °С) становится гораздо меньше, чем при нормальной температуре без перехода в сверхпроводящее состояние.

Сплавы высокого сопротивления с ρ при нормальной температуре не менее 0,3 мкОм·м. Металлы и сплавы высокого сопротивления применяются для изготовления резисторов, электронагревательных приборов, нитей ламп накаливания и т.п.

Металлы и сплавы различного назначения. К ним относятся тугоплавкие и легкоплавкие металлы, а также металлы и сплавы для контактов электрических аппаратов.

Классификация неметаллических проводников. К неметаллическим твердым проводникам относятся:

Угольные материалы − это материалы на основе углерода. Из углеродных материалов изготавливают щетки электрических машин, токосъемные вставки для токоприемников электровозов, электроды для прожекторов и дуговых электрических печей. Угольный порошок применяют в микрофонах.

Композиционные проводящие материалы − это искусственные материалы с электронным характером электрической проводимости, состоящие из проводящей фазы, связующего вещества и заполнителей с высокими диэлектрическими свойствами.

Классификация жидких и газообразных проводников. К жидким проводникам относятся:

Расплавленные металлы. В качестве жидкого металлического проводника при нормальной температуре может быть использована только ртуть (Нg), температура плавления которой около минус 39 °С. Другие металлы могут быть жидкими проводниками только при повышенных температурах, превышающих их температуру плавления.

Электролиты, или проводники второго рода − растворы кислот, щелочей и солей. Электропроводность в электролитах носит ионный характер, так как электрический ток в них обусловлен направленным движением анионов и катионов. Процесс прохождения электрического тока через электролит называют электролизом. В соответствии с законами Фарадея, при прохождении тока через электролиты вместе с переносом электрических зарядов происходит перенос ионов электролита, т.е. ионов проводящего вещества, вследствие чего состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза. Ионные кристаллы в расплавленном состоянии также являются проводниками второго рода.

К газообразным проводникам относятся все газы и пары, в том числе и пары металлов. При низких напряженностях электрического поля газы являются хорошими диэлектриками. Если же напряженность электрического поля превзойдет некоторое критическое значение, при котором начинается ударная ионизация, то в этом случае газ может стать проводником с электронной и ионной проводимостью. Сильно ионизированный газ при равенстве числа электронов в единице объема числу положительных ионов представляет собой особую проводящую среду, носящую название плазмы. Газы и пары металлов в качестве проводников используются в газоразрядных лампах освещения. Среди газоразрядных источников оптического излучения наиболее распространены лампы, в которых используется разряд в парах ртути. Это люминесцентные лампы низкого давления (до 0,01 МПа) и дуговые ртутные лампы (ДРЛ) высокого давления (0,01−1МПа).

К важнейшим параметрам, характеризующим свойства проводниковых материалов, относятся:

удельная проводимость γ или обратная ей величина − удельное сопротивление ρ;

температурный коэффициент удельного сопротивления  или ;

коэффициент теплопроводности ;

удельная теплоемкость с;

удельная теплота плавления rпл;

температурный коэффициент линейного расширения ТКЛР;

работа выхода электронов из металла А;

контактная разность потенциалов и термоэлектродвижущая сила еТ (термоЭДС);

предел прочности при растяжении σр и относительное удлинение при разрыве Δl/l.

Удельное электрическое сопротивление связано с сопротивлением проводника R, длиной l и площадью поперечного сечения S известной формулой:

                                                                                                             (1)

где S − площадь поперечного сечения, мм2; R – сопротивление проводника, Ом;

l − длина, м.

Для измерения ρ проводниковых материалов разрешается пользоваться внесистемной единицей Ом·мм2/м. Связь между названными единицами удельного сопротивления такая:

1 Ом·м = 106 мкОм·м = 106 Ом·мм2/м, т.е. 1 Ом·мм2/м = 1 мкОм·м.

Диапазон значений удельного сопротивления ρ металлических проводников при нормальной температуре довольно узок: от 0,016 для серебра и примерно до 1,4 мкОм·м для железохромоалюминиевых сплавов.

На основании электронной теории металлов величина удельного сопротивления металлического проводника равна

                                                 ,                                                (2)

где m − масса электрона (m = 9,1·10-31 кг); v − средняя скорость теплового движения электрона в металле; е − заряд электрона, Кл, q = 1,6·10-19 Кл; n0 число свободных электронов в единице объема металла; λ − средняя длина свободного пробега электрона между двумя соударениями с узлами кристаллической решетки.

Скорость теплового движения электронов мало зависит от температуры, так как электронный газ в металлах находится в состоянии «вырождения», для различных проводников она примерно одинаковая. Незначительно отличаются также и числа свободных электронов в единице объема проводников, например, для меди и никеля это различие составляет менее 10 %. Поэтому величина удельного электрического сопротивления различных проводников в основном зависит от средней длины свободного пробега электрона в данном проводнике, которая связана со строением проводника и его структурой.

Все чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления, а сплавы всегда имеют повышенное значение ρ в сравнении с компонентами, входящими в их состав. Повышенное сопротивление сплавов объясняется тем, что число свободных электронов и длина свободного пробега электрона у них понижена по сравнению с чистыми металлами. Из металлов высокой проводимости для электротехники наибольший интерес представляют серебро, медь, алюминий,  вольфрам и их сплавы.

Основные усредненные физические свойства металлов высокой проводимости при температуре 20 С представлены в табл. 1.

Т а б л и ц а  1

Металл

Плотность

кг/м3

Температура плавления, С.

Удельное электрическое

сопротивление, мкОм·м.

Серебро

10500

961

0,016

Медь

8940

1068

0,0172

Алюминий

2700

867

0,028

Золото

19300

1063

0,024

Вольфрам

19300

3380

0,055

Железо

7870

1535

0,098

На электрические свойства этих материалов оказывают влияние примесей (особенно на проводимость) и способ обработки (на механические характеристики).

В энергетике широко используются обмоточные провода, применяемые для изготовления обмоток электрических машин и аппаратов. Они изготовляются из электротехнической меди и алюминия. Из меди марки М1 с содержанием примеси не более 0,1 % можно получить провод диаметром до 0,03 − 0,02 мм, а из бескислородной меди марки М0, с содержанием примеси не более 0,05 % (в том числе кислорода не более 0,02 %) можно получать провод еще меньшего диаметра.

Марки обмоточных проводов определяют собой как материал провода, так и их изоляцию. Например, марка ПЭЛ − провод медный, покрыт лакостойкой эмалью на масляно-смоляной основе. АПЭЛ – изоляция та же, но материал провода − алюминий, на это указывает первая буква марки А, при медном проводе специальных указаний не делается.
Изоляцию обмоточных проводов классифицируют по ее роду на: эмалевую (марки ПЭВ, ПЭМ, ПЭТВ, ПЭЛО), комбинированную (ПЭЛБО, ПЭЛДО, ПЭТЛО) и др.

Эмалевые изоляции проводов отличаются высокой электрической прочностью при малой толщине,  что очень важно для лучшего использования заполнения паза электрических машин или окон магнитопроводов трансформаторов, однако они имеют недостаточную механическую прочность.

Провода с волокнистой или стекловолокнистой изоляцией обладают большей механической прочностью, но, к сожалению и большей толщиной, особенно из хлопчатобумажной или асбестовой пряжи.

Комбинированная изоляция проводов удачно сочетает преимущества двух указанных видов.

В особую группу целесообразно выделить провода с высокой нагревостойкостью: с эмалевой изоляцией ПЭТ-155 (155 °С), на полиамидной основе ПЭТ-200 (200 °С), со стекловолокнистой изоляцией ПСД (155 °С), ПСДК (180 °С), с комбинированной изоляцией ПЭТЛО (130 °С) и др.

Сплавы высокого сопротивления получили широкое применение при изготовлении электроизмерительных приборов, образцовых резисторов и нагревательных элементов (манганин, никелин,  константан, нихром и др.).

В первых двух случаях от сплавов требуется высокое удельное сопротивление и его высокая стабильность во времени, малый температурный коэффициент удельного сопротивления и малый температурный коэффициент термоЭДС в паре данного сплава с медью. В последнем случае от сплава требуется способность длительно работать на воздухе при высоких температурах (1000 °С и более). Кроме того, они должны быть дешевыми и по возможности не содержать дефицитных составляющих.

К проводникам относятся также припои и флюсы − специальные материалы, применяемые при пайке.

В зависимости от температуры плавления припои делятся на 2 группы:

  •  мягкие (до 400 °С), к ним относится олово, оловянно-свинцовые  припои марки ПОС и др. Они применяются там, где требуется лишь хороший электрический контакт;
  •  твердые (выше 500 °С) − медно-цинковые марки ПМЦ, серебряные − ПСр и др. Применяются для получения хорошего электрического контакта и механической прочности соединения.

Флюсы − это вспомогательные материалы, применяемые при пайке (канифоль, бура и др.). Они способны хорошо растворять и удалять окислы из расплава, создавать прочную пленку для защиты металла от окисления, улучшать растекаемость припоя.

Особую группу проводников составляют криопроводники и сверхпроводники – материалы, которые обладают ничтожно малым электрическим сопротивлением при температурах, близких к абсолютному нулю.

ПРИБОРЫ И ОБОРУДОВАНИЕ

Модуль «Измеритель RLC», «Модуль питания и USB осциллограф», образцы исследуемых проводников, соединительные провода.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Изучить теоретический материал, достаточный для выполнения лабораторной работы. Ответить на контрольные вопросы и получить у преподавателя допуск к проведению лабораторной работы.

2. Подать питание на комплект, включением автоматического выключателя и УЗО «Модуля питания и USB осциллограф». Установить соединительные провода в гнёзда RLC-метра, как указано на рисунке 1.

Рис. 1. Измерение сопротивления проволоки RLC-метром

Выбрать режим измерения сопротивления, нажимая кнопку L/C/R. Диапазон измерения выбирается автоматически. Измерить сопротивление проволоки на участках различной длины (от 0,1м до 0,5м) с шагом 0,1м. Так как проволока не имеет собственной изоляции, необходимо расположить её таким образом, чтобы она не соприкасалась сама с собой и другими металлическими предметами. Измеренные сопротивления  занести в таблицу 2.

Т а б л и ц а  2

l, м

R1, Ом

R2, Ом

Rn, Ом

0,1

0,5

3. Повторить измерения в соответствии с пунктом 2 для других образцов.

4. Построить графики зависимостей R(l)  исследуемых материалов. При построении графиков учесть, что прямые не будут проходить через точку (0), так как RLC-метр и его щупы имеют собственное сопротивление. По наклону графиков зависимостей R(l) определить коэффициент α

.                                                      (3)

Значение коэффициентов занести в таблицу 3.

Т а б л и ц а 3

Наименование

материала

α

d, мм

S, мм2

ρ, Ом·мм2

1-й образец

2-й образец

n-й образец

5. Рассчитать удельные сопротивления исследуемых образцов проводниковых материалов, принимая во внимание формулу (1) из которой видно, что

.

Таким образом, удельное сопротивление можно определить по выражению

.

6. Рассчитанные значения удельных сопротивлений занести в таблицу 3 и сравнить их со справочными.  По полученным результатам сделайте вывод о материалах, из которых изготовлены проволоки.

7. После оформления отчета и проверки результатов преподавателем необходимо разобрать схему, предоставить комплект в полном составе и исправности преподавателю или лаборанту.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Как классифицируют проводниковые материалы?

2. Чем отличаются проводники первого рода и второго рода?

3. Как зависит удельное сопротивление металлов от примесей?

4. Где применяются материалы высокой проводимости?

5. Для чего используют сплавы высокого сопротивления?

6. Какие металлы и сплавы нашли применение в энергетике?

PAGE   \* MERGEFORMAT 1


 

А также другие работы, которые могут Вас заинтересовать

78523. Понятие и классификация вычислительных сетей. Модель многоуровневого сетевого взаимодействия 27 KB
  COWS – кластар рабочих станций NOWS – сеть рабочих станций Основной классифицирующей характеристикой ВС является их масштабная территориальная характеристика: локальные вычислительные сети и глобальные вычислительные сети ГВС и региональные городские РВС. Сети отделов. Сети кампусов изначально преследовали цель объединения нескольких мелких локальных сетей в одну. Корпоративные сети в рамках одного предприятия.
78524. Физический уровень сетевых телекоммуникаций: общие понятия, типы и характеристики линий связи, методы передачи данных 27 KB
  Физический уровень сетевых телекоммуникаций: общие понятия типы и характеристики линий связи методы передачи данных Физ. В зависимости от типа физической среды передачи информации линии связи могут быть либо кабельными проводными либо беспроводными электромагнитные волны. в оптоволоконном кабеле для передачи данных используются световые импульсы. малую надежность передачи информации.
78525. Базовые сетевые технологии: стандарты, механизмы, характеристики 27 KB
  Под топологией компьютерной сети обычно понимают физическое расположение компьютеров сети относительно Друг Друга и способ соединения их линиями. Топология определяет требования к оборудованию тип используемого кабеля методы управления обменом надежность работы возможность расширения сети. Звезда: все компьютеры сети соединяются с центральным компьютером активная звезда при отсутствии центрального компьютера – псевдо звезда. По сети непрерывно циркулирует маркер который имеет длину 3 байта и не содержит обычных данных.
78526. Конструирование путевых машин капитального ремонта пути 1007.73 KB
  От его работы зависит бесперебойная работа всех его секторов. Железнодорожный транспорт многоотраслевое хозяйство представлявшее собой огромный по протяженности конвейер бесперебойная и безаварийная работа которого зависит от функционирования каждой из его составных частей. Железнодорожный путь работает в самых сложных атмосферноклиматических условиях при постоянном воздействии динамической нагрузки от проходящих поездов. Для обеспечения указанных требований постоянно ведутся работы по усилению несущей способности и...
78527. Технология производства рабочей лопатки турбины 4.23 MB
  Одной из самых нагруженных деталью, ограничивающей межремонтный ресурс, являются неохлаждаемые лопатки турбины, изготавливаемые из деформируемого никелевого сплава ЭИ893. Лопатки из этого сплава из-за ограничений по длительной прочности имеют ресурс 48000 часов.
78528. Построение системы управления поставками и маркетинга для крупного металлургического холдинга «КарМет» 19.86 MB
  Традиционные информационные системы изначально были функциональной основой для множества организаций или функциональных сфер, но не могли объединять их в случае их географической распределенности. Одну и ту де информацию собирали многократно и во многих местах, и она была недоступна в реальном времени.
78529. Расчет и проектирование объемной гидропередачи привода рабочего органа дорожно-строительной машины 1.02 MB
  В настоящее время гидропривод широко применяется в авиационной, станкостроительной, тракторостроительной, металлургической и многих других отраслях промышленности. Гидропривод широко применяется также в тяжелых грузоподъемных машинах и самоходных агрегатах.
78530. Расчет путевода улицы Ленинградская 590.91 KB
  Условия движения особенно в городах характеризуются все возрастающей сложностью. Высокая и все увеличивающаяся интенсивность движения – результат диспропорции между ростом автомобильного парка и сетью автомобильных дорог. Высокий уровень аварийности связанный с человеческим фактором – результат диспропорции между уровнями подготовки и транспортной культуры участников движения и массовости профессий водителя. Увеличение интенсивности изменение структуры и скоростных режимов транспортных потоков предъявляют все более жесткие требования к...