1200

Энергетический расчет оптико-электронного прибора

Научная статья

Коммуникация, связь, радиоэлектроника и цифровые приборы

Для обеспечения работоспособности любого оптико-электронного прибора важно получить определенные энергетические соотношения между полезным сигналом и порогом чувствительности прибора. В качестве материала анализирующей призмы, при заданном диапазоне измерения коэффициента преломления.

Русский

2013-01-06

55 KB

51 чел.

Энергетический расчет оптико-электронного прибора

  Для обеспечения работоспособности любого оптико-электронного прибора важно получить определенные энергетические соотношения между полезным сигналом и порогом чувствительности прибора. Порог чувствительности прибора обычно определяется шумами.

    Для обеспечения устойчивой работы, при выбранном алгоритме функционирования, необходимо обеспечить равномерную засветку анализирующей площадки в рабочем угле поля анализа ωа.

  Линейные размеры площадки анализа определяются техническим заданием и равны 10х5мм, а угол анализа определяется на основании расчета оптической схемы с учетом выбора базовых компонентов. Такими компонентами являются: материал анализирующей призмы, приемник излучения, световод и источник излучения.

        В качестве материала анализирующей призмы, при заданном диапазоне измерения коэффициента преломления, выбрано стекло марки К8.  Тем самым определен необходимый рабочий угол равномерного освещения излучателя и рабочее поле зрения анализирующего объектива. Этот угол на входе призмы равен 17.895о или ±8.95о в плоскости изменения угла полного внутреннего отражения совмещенного с расположением фотоприемника.

      В качестве фотоприемника выбрана CCD линейка марки ILX 751B. Использование такого приемника позволяет обеспечить статистическое сканирование поля анализа, т.е. обеспечить поиск зоны ПВО или НПВО без использования подвижных механических узлов.

      Поперечный размер чувствительной площадки соответствует размеру отдельного пикселя 14Х14мкм. Что определяет очень маленькую величину рабочего поля анализа в поперечном направлении, а, следовательно, и слабое использование мощности источника излучения.

   Для обеспечения достаточного сигнал/ шум необходимо использовать сверхяркие светодиоды с оптическим согласованием для равномерной засветки анализирующей площадки. Оптическое согласование должно предусматривать равномерность по площади и полю в рабочем диапазоне. Иначе говоря, анализирующая площадка должна быть равномерно освещена 10х5мм и по полю в пределах телесного угла сечением 18°. Поэтому необходимо выбрать светодиод, имеющий сверхяркую интенсивность и достаточно большую площадь выходного зрачка. В этом смысле представляет интерес светодиод типа TLCS5100, который характеризуется силой света 7500мКд и углом поля зрения 18°. Однако форма его зрачка не соответствует требуемой и недостаточна для прямой засветки анализирующей площадки. Для трансформации формы используем волоконный световод с хаотической укладки волокна и неизменной площадью передней и задней зрачкам. Передний зрачок равен выходному зрачку светодиода и равен

Площадь анализирующей призмы с учетом угла падения равна 25мм2. Интенсивность светового потока на выходе равна интенсивности на входе с учетом пропускания световода. В зависимости от плотности укладки и относительно порванных относительного количества волокон пропускание меняется в диапазоне от 0.5-0.67. Для гарантированного обеспечения сигнал/ шум выбираем минимальное значение коэффициента пропускания. В таком случае интенсивность светового потока на анализирующей поверхности равна:

   Приемник излучения имеет паспортные данные, выраженные в единицах световой освещенности плоскости расположения линейки.

  Основные параметры приемника ILX 751B:

Чувствительность                                                                     Sc=40 В/лк*с

Неравномерность чувствительности по длине                      PRNU-2%

Максимальный выходной сигнал                                           Umax=1.8В.

Темновое выходное напряжение                                             Uт=0.3 мВ.

Неравномерность темнового сигнала                                     UΔUт=0.5 мВ.

Динамический диапазон                                                          6* 103

Максимальная экспозиция                                                      0.045 лк*с

Питание +9В                                                                              4ма (8max)

              +5В                                                                              1.8ma (5max)

Выходной импеданс                                                                  600 Ом

Выходной начальный уровень                                                +4В.

Особенностью работы приемников излучения типа выбранного, заключается в том, что сигнал и темновой ток отдельного пикселя накапливаются в течении четко стробируемого интервала времени. Именно поэтому чувствительность приемника задается в единицах экспозиции (В/ лк*с) и при этом ограничивается величина экспозиции максимальным уровнем 4.5*10-2 лк*с.

         Так как измеряемый прибор является измерительным, то для обеспечения максимальной разрешающей способности необходимо максимально использовать его динамический диапазон.

       В качестве базового источника света выбираем сверхяркий светодиод типа TLCS5100, который имеет зрачок ø5.1мм и интенсивностью излучения 7500 м Кд при угле поля зрения 18°. Этот угол соответствует диапазону изменения угла полного внутреннего отражения разработанной оптической схемой прибора.

        Для нахождения освещенности выходного зрачка светодиода найдем величину потока на его выходе.

                                                      

Где Iд – паспортная интенсивность светодиода, выраженная в Кд

       ω- телесный угол, в котором эта освещенность обеспечена.

                                             

Получаем, что величина потока излучения равна:

                                

Тогда освещенность выходного зрачка   СД, с учетом его площади SД будет

                       

      В случае, когда приёмная площадка приёмника излучения оптически совмещена с выходным зрачком СД и можно пренебречь потерями на оптическое преобразование, время для достижения максимальной экспозиции будет равно

                                     

   Реально, в структуре прибора  поток до прихода на приемник излучения проходит ряд необходимых или физически реально действующих оптических преобразований.

     Прежде всего, поток излучения должен заполнить полностью анализирующую площадку. Размер сечения потока для такого заполнения равен 10х5мм, площадь равна 50мм2. Площадь выходного зрачка существенно меньше и используемая оптическая система для согласования зрачков  приведёт к уменьшению эффективной яркости. Затем учитывая, что равномерность излучения по выходному сечению в паспорте на светодиод не гарантируется и для трансформации и согласования зрачков светодиода и оптической системы целесообразно использовать волоконо- оптическую систему с хаотической укладкой. Такие системы характеризуются коэффициентом пропускания 0.5÷0.6.

      Используемый алгоритм нахождения значения показателя преломления предполагает работу с только одной компонентой поляризации излучения СД, поэтому в оптической схеме присутствует поляризационный фильтр, который характеризуется коэффициентом пропускания 0,4

   Так как анализирующая система представляет собой коллиматор, то зная фокус его объектива и расходимость излучения на его входе можно найти  площадь засветки в его фокальной плоскости.

                             

     Освещённость приёмной площадки с учётом пропускания оптической системы может быть найдена в виде:

                           

     Зная требуемую величину экспозиции для получения максимального сигнала, найдём требуемое время экспозиции:

                              

    Согласно паспорту приёмника излучения, время экспозиции не должно превышать величину в 10мс, поэтому необходимо использовать светодиод в импульсном режиме. При сохранении средней мощности на СД во времени, возможно его форсирование более чем в 100 раз. При форсировании равном 100 время экспозиции будет равно 546мкс, что соответствует рекомендациям по использования приёмника излучения.


 

А также другие работы, которые могут Вас заинтересовать

41187. Тонкие пленки наносимые в вакууме 222 KB
  Таким образом при нанесении тонких пленок одновременно протекают три основных процесса: генерация направленного потока частиц осаждаемого вещества пролет частиц в вакуумном пространстве от их источника к обрабатываемой поверхности осаждение конденсация частиц на поверхности с образованием тонкопленочных слоев. Метод термического испарения основан на нагреве веществ в специальных испарителях до температуры при которой начинается заметный процесс испарения и последующей конденсации паров вещества в виде тонких пленок на обрабатываемых...
41189. Разработка и принятие управленческих решений 86 KB
  Принятие решений это организационный связующий процесс. Если коммуникации своего рода стержень пронизывающий любую деятельность в организации то принятие решений это центр вокруг которого вращается жизнь организации.1 По поводу разработки и принятия решений в менеджменте ведутся продолжительные споры между специалистами.
41190. Учет обязательств МСФО 114 KB
  Определение обязательства Обязательства настоящая задолженность предприятия которая возникает вследствие прошедших событий и погашение которой как ожидается приведет к убытию ресурсов с предприятия которые воплощают в себе будущие экономические выгоды. Обязательства это обязанность или ответственность действовать или поступать определенным образом. Обязательства могут иметь юридическую силу вследствие контрактных обязательств или законодательных требований. Но обязательства также возникают в результате ежедневной деловой практики...
41191. Теплообмен излучением 390 KB
  Природа теплового излучения Излучение это перенос энергии при помощи электромагнитных волн испускаемых излучаемым телом. Последние проявляются в том что испускание и поглощение энергии излучения осуществляется отдельными порциями фотонами света или квантами. Каждое конкретное тело обладает своим спектром излучения с соответствующим распределением электромагнитного излучения по длинам волн. Твердые тела и жидкости как правило имеют непрерывный спектр излучения
41192. Нанесение пленок методом ионного распыления 105 KB
  Принцип действия устройств ионного распыления основан на таких физических явлениях как ионизация частиц газа тлеющий разряд в вакууме и распыление веществ бомбардировкой ускоренными ионами. Таким образом плазма тлеющего разряда является генератором ионов необходимых для эффективной бомбардировки катода и его распыления. Схема ионного распыления Показателем эффективности процесса ионного распыления является коэффициент распыления который выражается числом удаленных частиц распыляемого вещества приходящихся на один бомбардирующий ион и...
41193. Учет собственного капитала за МСФО 139.5 KB
  Бухгалтерский учет капитала в простых товариществах очень похож на учет при единоличном владении. Основное отличие заключается в том что необходимо вести учет по счетам вложения и изъятия капитала каждого из партнеров и распределять между ними прибыли и убытки. В разделе балансового отчета Капитал партнеров необходимо отдельно показывать сальдо по каждому счету. Главное отличие бухгалтерского учета в акционерных обществах от учета в единоличных хозяйствах и товариществах заключается в учете капитала.
41194. Закон Кирхгофа 1.34 MB
  Плотности потока собственного излучения серого и абсолютно черного тел; их поглощательные способности; температуры тел. Рассмотрим случай равновесного излучения когда . расход энергии излучения равен ее приходу. Отношение плотности потока собственного излучения тела к его поглощательной способности одинаково для всех серых тел и равно плотности потока собственного излучения абсолютно черного тела при той же температуре.
41195. КОНТРОЛЬ ПАРАМЕТРОВ ПЛЕНОК И ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ ИХ НАНЕСЕНИЯ 143.5 KB
  Наиболее важен контроль в камере так как в зависимости от его результатов регулируются режимы процесса роста пленки что позволяет устранить операции подгонки ее параметров после нанесения. Метод микровзвешивания в основном используемый в производстве гибридных ИМС состоит в определении приращения массы Δm подложки после нанесения на нее пленки. При этом среднюю толщину пленки определяют по формуле: где площадь пленки на подложке; удельная масса нанесенного вещества. При измерении толщины пленки взвешиванием считают что плотность...