12097

Магнитное поле на оси короткого соленоида

Лабораторная работа

Физика

Лабораторная работа № 5.28к Магнитное поле на оси короткого соленоида Цель работы: ознакомиться с баллистическим методом измерения магнитной индукции магнитного поля соленоида. Работа выполняется на ЭВМ. Краткие теоретические сведения Баллистический мето

Русский

2013-04-24

49 KB

27 чел.

Лабораторная работа № 5.28к

Магнитное поле на оси короткого соленоида

Цель работы: ознакомиться с баллистическим методом измерения магнитной индукции магнитного поля соленоида.

Работа выполняется на ЭВМ.

Краткие теоретические сведения

Баллистический метод измерения магнитной индукции.  

В основе баллистического метода измерения магнитной индукции лежит явление электромагнитной индукции (ЭМИ). Поместим в магнитное поле небольшую многовитковую катушку, в цепь которой включим баллистический гальванометр. Тогда при всяком изменении магнитного поля будет изменяться потокосцепление катушки и в цепи катушки появится индукционный ток. Величина заряда, прошедшего через гальванометр, пропорциональна изменению потокосцепления:

. (1)

Потокосцепление зависит от числа витков катушки и магнитного потока через ее поверхность:

. (2)

При неизвестном направлении магнитной индукции следует выбирать ориентацию катушки таким образом, чтобы изменение потокосцепления и, следовательно, показания гальванометра были максимальными.

Если направление индукции определено и размеры катушки достаточно малы, чтобы поле в пределах катушки можно было считать однородным, то выражение (2) переходит в (3):

, (3)

где, N-число витков катушки; S-площадь одного витка.

Изменение потокосцепления при выключении поля равно NBS, при изменении направления поля на противоположное – 2NBS.

Баллистический гальванометр – электроизмерительный прибор с большим периодом собственных колебаний подвижной рамки, предназначенный для измерения величины заряда, проходящего через него, при коротких импульсах электрического тока.

Если время изменения потокосцепления много меньше периода собственных колебаний рамки гальванометра, то заряд, прошедший по цепи, пропорционален показаниям баллистического гальванометра:

q = Cqb, (4)

где, Сq- чувствительность баллистического гальванометра, Кл/дел; b- показание гальванометра, дел.

При изменении направления магнитного поля на противоположное, объединяя (4), (3) и (1), получим  выражение для магнитной индукции:

 . (5)

Таким образом, помещая небольшую многовитковую катушку в различные точки магнитного поля, по показаниям баллистического гальванометра можно определить значение магнитной индукции в этих точках.

Магнитное поле на оси короткого соленоида.

Выделим малый участок длины соленоида dx, по которому протекает ток силой dI (рис. 1), и воспользуемся выражением для магнитной индукции на оси кругового тока:

                (6)

Интегрируя (6) по х от 0 до L и переходя к углам a1 и a2, получим выражение для магнитной индукции на оси соленоида:

, (7)

где, I- сила электрического тока, протекающего по соленоиду; n- плотность намотки (число витков на единицу длины соленоида).  

,

Порядок выполнения работы

Лабораторная установка представляет собой короткий соленоид, по оси которого перемещается небольшая измерительная катушка, включенная в цепь баллистического гальванометра

Положение измерительной катушки определяется координатой х, отсчитываемой от центра соленоида. В данной лабораторной работе изменение потокосцепления производится коммутацией (изменением направления) тока, протекающего по соленоиду.

1. В диалоговом окне «Сила тока» установить силу тока (по указанию преподавателя I=0,05; 0,1; 0,15; 0,2 А).

2. Установить в диалоговом окне «Координата Х» значение х=0 см.

3. Активировать «мышкой» коммутатор на схеме.

4. Заметить максимальный отброс указателя гальванометра b, дел., записать значения х и b в таблицу.

Повторить п.п.2,3,4, изменяя значение координаты Х (рекомендуемые значения- 0,3, 5, 7, 9, 10, 11, 13, 15, 17, 20 см).

Вычислить значения магнитной индукции Вэксп. по (5), где R=Rг, S=pd2/4, результаты занести в таблицу.

Параметры соленоида:

диаметр соленоида D=20 см,

длина соленоида L=20 см,

плотность намотки n=2×103вит/м.

Параметры измерительной катушки и баллистического гальванометра:

диаметр d=1 см, число витков N=300 вит.,

сопротивление гальванометра Rг=20 Ом,

чувствительность гальванометра Сq=9,5×10-9Кл/дел.

Построить график теоретической зависимости Втеор=В(х), рассчитав по (7) значения Втеор. и записав их в таблицу.

Нанести экспериментальные значения магнитной индукции на график. Сравнить зависимости и сделать вывод.

Таблица

Х, см

b, дел

Вэксп., Тл

Втеор., Тл

0

×

×

×

20

Контрольные вопросы

1. Закон Био – Савара и принцип суперпозиции для магнитного поля.

2. Магнитное поле на оси кругового тока.

3. Расчет магнитного поля на оси короткого соленоида.

4. Баллистический метод измерения магнитной индукции.

Чувствительность баллистического гальванометра, вычисление магнитной индукции в работе.

···································

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

dI

x

a1

a2

B

L

Рис.1

L/2


 

А также другие работы, которые могут Вас заинтересовать

21593. МОДУЛЬНЫЙ ПРИНЦИП КОНСТРУИРОВАНИЯ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 659.5 KB
  Модули нулевого уровня. Модули первого уровня. Модули второго уровня. Модули третьего уровня.
21594. ЭЛЕКТРИЧЕСКИЕ СОЕДИНЕНИЯ В РАДИОЭЛЕКТРОННОЙ АППАРАТУРЕ 516.5 KB
  Линии передач ЛП. Электрически длинные линии передачи. Линии электропитания. Виды электрических соединений [2] Линии передач ЛП.
21595. ОСНОВЫ ТЕХНОЛОГИИ ПРОИЗВОДСТВА РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 245.5 KB
  Technology of the fabrication of the electronic instruments Тема 10: ОСНОВЫ ТЕХНОЛОГИИ ПРОИЗВОДСТВА РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ Никогда не известно для чего нужна лишняя деталь пока ее не выбросишь. Содержание: Организация производства радиоэлектронной аппаратуры. Основные понятия технологии производства аппаратуры. Типы производства.
21596. РАЗРАБОТКА ТЕХПРОЦЕССОВ ПРОИЗВОДСТВА РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 441.5 KB
  Проектирование техпроцессов сборки и монтажа. Типовые и групповые процессы сборки и монтажа. Техпроцессы сборки и монтажа аппаратуры. Выбор техпроцесса сборки электронного узла.
21597. ПРОЕКТИРОВАНИЕ ПЕЧАТНЫХ ПЛАТ 235.5 KB
  Печатные платы. Общие сведения о печатном монтаже [1 3 4] Печатные платы это элементы конструкции которые состоят из плоских проводников в виде участков металлизированного покрытия размещенных на диэлектрическом основании и обеспечивающих соединение элементов электрической цепи. В зависимости от числа нанесенных печатных проводящих слоев печатные платы разделяются на одно двух и многослойные. Односторонние печатные платы ОПП выполняются на слоистом прессованном или рельефном литом основании без металлизации или с металлизацией...
21598. ТЕХНОЛОГИЧЕСКИЕ ОПЕРАЦИИ ИЗГОТОВЛЕНИЯ ПП 284 KB
  Формирование рисунка печатных плат. Контроль и испытания плат. Отсюда распространенное название таких плат печатные платы ПП. Малогабаритные платы размером до 100 мм размещают на групповой заготовке площадью не менее 005 м2 с расстоянием 510 мм между ними.
21599. ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ПЕЧАТНЫХ ПЛАТ 252 KB
  Доминирующей в этих условиях является субтрактивная технология особенно с переходом на фольгированные диэлектрики с тонкомерной фольгой 5 и 18 мкм. Сухой пленочный фоторезист СПФ наслаивается на заготовки фольгированного диэлектрика прошедшие операции сверления отверстий и предварительной 57 мкм металлизации медью стенок отверстий и всей поверхности фольги. Для получения изображений используется пленочный фоторезист толщиной 1550 мкм. Фоторезисты толщиной менее 4550 мкм на этих операциях над отверстиями разрушаются.
21600. УСТАНОВКА КОМПОНЕНТОВ НА ПЕЧАТНЫХ ПЛАТАХ 193.5 KB
  Technology of making of the printed boards Тема 15: УСТАНОВКА КОМПОНЕНТОВ НА ПЕЧАТНЫХ ПЛАТАХ Все вещи таковы каков дух того кто ими владеет. Установка компонентов на ПП. Системы подачи компонентов. Операция установки компонентов на печатную плату во многом определяет экономичность и производительность этого процесса.
21601. ПАЙКА И КОНТРОЛЬ ПЕЧАТНЫХ ПЛАТ 212.5 KB
  Пайка волной припоя. Производство печатных плат на заключительной стадии сборочномонтажных операций включает в себя следующие основные этапы: оплавление припоя с помощью печей или в машинах; отмывка плат; выходной контроль; ремонт дефектных плат если он возможен; влагозащита плат; упаковка. При пайке две металлические детали или детали с металлическим покрытием соединяются при помощи припоя третьего металла или сплава. Обеспечить вытеснение флюса с помощью наступающего припоя; 4.