12097

Магнитное поле на оси короткого соленоида

Лабораторная работа

Физика

Лабораторная работа № 5.28к Магнитное поле на оси короткого соленоида Цель работы: ознакомиться с баллистическим методом измерения магнитной индукции магнитного поля соленоида. Работа выполняется на ЭВМ. Краткие теоретические сведения Баллистический мето

Русский

2013-04-24

49 KB

29 чел.

Лабораторная работа № 5.28к

Магнитное поле на оси короткого соленоида

Цель работы: ознакомиться с баллистическим методом измерения магнитной индукции магнитного поля соленоида.

Работа выполняется на ЭВМ.

Краткие теоретические сведения

Баллистический метод измерения магнитной индукции.  

В основе баллистического метода измерения магнитной индукции лежит явление электромагнитной индукции (ЭМИ). Поместим в магнитное поле небольшую многовитковую катушку, в цепь которой включим баллистический гальванометр. Тогда при всяком изменении магнитного поля будет изменяться потокосцепление катушки и в цепи катушки появится индукционный ток. Величина заряда, прошедшего через гальванометр, пропорциональна изменению потокосцепления:

. (1)

Потокосцепление зависит от числа витков катушки и магнитного потока через ее поверхность:

. (2)

При неизвестном направлении магнитной индукции следует выбирать ориентацию катушки таким образом, чтобы изменение потокосцепления и, следовательно, показания гальванометра были максимальными.

Если направление индукции определено и размеры катушки достаточно малы, чтобы поле в пределах катушки можно было считать однородным, то выражение (2) переходит в (3):

, (3)

где, N-число витков катушки; S-площадь одного витка.

Изменение потокосцепления при выключении поля равно NBS, при изменении направления поля на противоположное – 2NBS.

Баллистический гальванометр – электроизмерительный прибор с большим периодом собственных колебаний подвижной рамки, предназначенный для измерения величины заряда, проходящего через него, при коротких импульсах электрического тока.

Если время изменения потокосцепления много меньше периода собственных колебаний рамки гальванометра, то заряд, прошедший по цепи, пропорционален показаниям баллистического гальванометра:

q = Cqb, (4)

где, Сq- чувствительность баллистического гальванометра, Кл/дел; b- показание гальванометра, дел.

При изменении направления магнитного поля на противоположное, объединяя (4), (3) и (1), получим  выражение для магнитной индукции:

 . (5)

Таким образом, помещая небольшую многовитковую катушку в различные точки магнитного поля, по показаниям баллистического гальванометра можно определить значение магнитной индукции в этих точках.

Магнитное поле на оси короткого соленоида.

Выделим малый участок длины соленоида dx, по которому протекает ток силой dI (рис. 1), и воспользуемся выражением для магнитной индукции на оси кругового тока:

                (6)

Интегрируя (6) по х от 0 до L и переходя к углам a1 и a2, получим выражение для магнитной индукции на оси соленоида:

, (7)

где, I- сила электрического тока, протекающего по соленоиду; n- плотность намотки (число витков на единицу длины соленоида).  

,

Порядок выполнения работы

Лабораторная установка представляет собой короткий соленоид, по оси которого перемещается небольшая измерительная катушка, включенная в цепь баллистического гальванометра

Положение измерительной катушки определяется координатой х, отсчитываемой от центра соленоида. В данной лабораторной работе изменение потокосцепления производится коммутацией (изменением направления) тока, протекающего по соленоиду.

1. В диалоговом окне «Сила тока» установить силу тока (по указанию преподавателя I=0,05; 0,1; 0,15; 0,2 А).

2. Установить в диалоговом окне «Координата Х» значение х=0 см.

3. Активировать «мышкой» коммутатор на схеме.

4. Заметить максимальный отброс указателя гальванометра b, дел., записать значения х и b в таблицу.

Повторить п.п.2,3,4, изменяя значение координаты Х (рекомендуемые значения- 0,3, 5, 7, 9, 10, 11, 13, 15, 17, 20 см).

Вычислить значения магнитной индукции Вэксп. по (5), где R=Rг, S=pd2/4, результаты занести в таблицу.

Параметры соленоида:

диаметр соленоида D=20 см,

длина соленоида L=20 см,

плотность намотки n=2×103вит/м.

Параметры измерительной катушки и баллистического гальванометра:

диаметр d=1 см, число витков N=300 вит.,

сопротивление гальванометра Rг=20 Ом,

чувствительность гальванометра Сq=9,5×10-9Кл/дел.

Построить график теоретической зависимости Втеор=В(х), рассчитав по (7) значения Втеор. и записав их в таблицу.

Нанести экспериментальные значения магнитной индукции на график. Сравнить зависимости и сделать вывод.

Таблица

Х, см

b, дел

Вэксп., Тл

Втеор., Тл

0

×

×

×

20

Контрольные вопросы

1. Закон Био – Савара и принцип суперпозиции для магнитного поля.

2. Магнитное поле на оси кругового тока.

3. Расчет магнитного поля на оси короткого соленоида.

4. Баллистический метод измерения магнитной индукции.

Чувствительность баллистического гальванометра, вычисление магнитной индукции в работе.

···································

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

dI

x

a1

a2

B

L

Рис.1

L/2


 

А также другие работы, которые могут Вас заинтересовать

22178. ПЕРСЕПТРОНЫ 260.5 KB
  Сети состоящие из одного слоя персептронных нейронов соединенных с помощью весовых коэффициентов с множеством входов см. Подобно биологическим системам которые они моделируют нейронные сети сами моделируют себя в результате попыток достичь лучшей модели поведения. При обучении нейронной сети мы действуем совершенно аналогично. Предъявляя изображение буквы А на вход нейронной сети мы получаем от нее некоторый ответ не обязательно верный.
22179. Нечеткие запросы к реляционным базам данных 81 KB
  К усиливающим относится модификатор Очень Very к ослабляющим Болееилименее или Приблизительно Почти moreorless нечеткие множества которых описываются функциями принадлежности вида: Для примера формализуем нечеткое понятие Возраст сотрудника компании . Последнее что осталось сделать построить функции принадлежности для каждого лингвистического терма. Выберем трапецеидальные функции принадлежности со следующими координатами: Молодой = [18 18 28 34] Средний = [28 35 45 50] Выше среднего = [42 53 60 60]. Теперь можно...
22180. ВВЕДЕНИЕ. ОБЩИЕ СВЕДЕНИЯ ОБ ЭКСПЕРТНЫХ СИСТЕМАХ 224 KB
  Наконец наиболее цитируемым определением третьего типа является следующее: ИИ это область знаний которая находит применение при решении задач связанных с обработкой информации на естественном языке автоматизацией программирования управлением роботами машинным зрением автоматическим доказательством теорем разумными машинами извлечения и т. Способы получения и представления знаний в интересах проектирования СИИ в настоящее время составляют предмет сравнительно нового научного направления инженерии знаний. Форма представления знаний...
22181. Структуры и стратегии поиска в пространстве состояний 360 KB
  Решение задачи методом поиска 2. Структуры и стратегии поиска в пространстве состояний 3. Решение задачи методом поиска От выбранного метода поиска то есть стратегии вывода будет зависеть порядок применения и срабатывания правил.
22182. Аппарат нечетких нейронных или гибридных сетей 450.5 KB
  Например нейронные сети хороши для задач распознавания образов но весьма неудобны для выяснения вопроса как они такое распознавание осуществляют. Они могут автоматически приобретать знания но процесс их обучения зачастую происходит достаточно медленно а анализ обученной сети весьма сложен обученная сеть обычно черный ящик для пользователя. Теоретически системы с нечеткой логикой и искусственные нейронные сети эквивалентны друг другу однако в соответствии с изложенным выше на практике у них имеются свои собственные достоинства и...
22183. Генетические алгоритмы 248.5 KB
  Это приводит к тому что приспособленность популяции возрастает позволяя ей лучше выживать в изменяющихся условиях. 1 Основные понятия генетических алгоритмов При описании генетических алгоритмов используются определения заимствованные из генетики например речь идет о популяции особей а в качестве понятий применяются ген хромосома генотип фенотип аллель. Следовательно особями популяции могут быть генотипы либо единичные хромосомы в довольно распространенном случае когда генотип состоит из одной хромосомы. Она представляет меру...
22184. Знания и их свойства. Структура и этапы разработки ЭС 193.5 KB
  Классификация знаний 3. Методология разработки интеллектуальных систем на примере СОЗ ЭС Знания и их свойства Тематика представления знаний Knowledge Representation KR уже давно считается одними из основных направлений работ в области искусственного интеллекта поскольку выбор правильного способа представления знаний является не менее значимым фактором от которого зависит успешное создание системы чем разработка самого программного обеспечения в котором используются эти знания. С тематикой представления знаний тесно связана не...
22185. Модели представления знаний 655.5 KB
  Классификация моделей представления знаний. Модели на основе теоретического подхода Классификация моделей представления знаний Одним из основных элементов в архитектуре экспертной системы является база знаний БЗ. Фейгенбаумом мощность экспертной системы зависит в первую очередь от мощности базы знаний и возможности ее пополнения.
22186. Выявление знаний от экспертов 667.5 KB
  Экспертное оценивание представляет собой процесс измерения который можно определить как процедуру сравнения объектов по выбранным показателям признакам. В качестве показателей сравнения могут использоваться пространственновременные физические психические и другие свойства и характеристики объектов. Процедура сравнения включает в себя: определение причинноследственной связи между объектами; установление степени влияния одних объектов на другие.