12114

Исследование свободных колебаний в контуре

Лабораторная работа

Физика

Лабораторная работа № 2 Тема: Исследование свободных колебаний в контуре Цель: Научиться измерять параметры свободных колебаний в контуре анализировать влияние изменений реактивного и активного сопротивлений контура на параметры свободных колебаний определ

Русский

2013-04-24

216.5 KB

20 чел.

Лабораторная работа № 2

Тема: Исследование свободных колебаний в контуре

Цель: Научиться измерять параметры свободных колебаний в контуре, анализировать влияние изменений реактивного и активного сопротивлений контура на параметры  свободных колебаний, определять коэффициенты, характеризующие затухание свободных колебаний.

Оборудование: ПЭВМ, программа Electronics Workbench 5.12, тестовая программа «MyTest», лабораторная установка, генератор импульсных сигналов, осциллограф, мультимедиапроектор .

1 Краткие теоретические сведения

Эквивалентная схема реального контура (рисунок 1) содержит индуктивность L, ёмкость, С и активное сопротивление r, которое равно сумме активных сопротивлений в индуктивности (rL) и ёмкости rс.

 

            Рисунок 1 – Эквивалентная схема реального колебательного контура

В реальном контуре периодическое преобразование реактивной энергии (электрической в магнитную и обратно) сопровождается потерями на сопротивлении r, вследствие чего амплитуда колебаний уменьшается от периода к периоду или свободные колебания в реальном контуре имеют затухающий характер.

Амплитуда свободных колебаний Im(t) с течением времени t изменяется по экспоненциальному закону (рисунок 2).

             Рисунок 2 – Временные диаграммы мгновенного (а) и амплитудного (б) 

значений тока в реальном контуре при свободных колебаниях в нем

;

где Iom – амплитуда тока в начале процесса (t = 0);

     ц – постоянная времени контура

                                   ц = 2L/r ;                                                           (2)

Мгновенное значение тока в контуре.

где 0 – угловая частота свободных колебаний контура.

Мгновенное значение напряжения на индуктивности контура.

;

где Uom – начальная амплитуда напряжения;

      φ – сдвиг по фазе между напряжением UL и током i(φ = arctg (0τц)).

С увеличением сопротивления потерь r постоянная времени контура τц уменьшается, и амплитуда колебаний Im убывает быстрее.

          Частота свободных колебаний равна

,

где – характеристическое сопротивление контура.  

                                                .                                                      (6)

Так как r исчисляется несколькими, а – сотнями Ом, то r2/42 <<1. Тогда

.

Свободные колебания в контуре возможны только при r < 2. В противном случае подкоренное выражение в формуле (5) отрицательное и собственная частота контура ω оказывается мнимой величиной. Физически это означает, что потери в контуре настолько велики, что перезаряд конденсатора становится невозможным и разряд его приобретает апериодический характер (рисунок 3).

Добротность колебательного контура определяется из выражения

                                               .                                                    (8)

 

Затухание колебаний d определяется из выражения

                                               .                                                   (9)

 Реактивные сопротивления индуктивности и ёмкости определяются из выражений

                                      L,       .                                                 (10)

                                      

            Рисунок 3 – Ток в контуре при апериодическом разряде конденсатора

Переход от колебательного разряда к апериодическому совершается при критическом затухании, соответствующему равенству r = 2.

2 Ход работы

2.1.Включить ЭВМ

2.2.Запустить программу Electronic Workbench 5.12.

2.3.Открыть файл схемы (Файл \ открыть \диск М \ Радиотехническое отделение \  Радиотехника \ Лабораторная работа№2\схема лр№2).

                                       Рисунок 4 – Схема лабораторной установки

Схема лабораторной установки (рисунок 4) представляет собой колебательный контур, параметры L и  C которого можно изменять. Сопротивление R – это активное сопротивление катушки индуктивности L (сопротивление потерь колебательного контура). Емкость С1 обеспечивает подключение импульсного генератора к колебательному контуру и исключает постоянную составляющую напряжения на контуре. Осциллограф подключен каналом А (красная линия) к выходу генератора, а каналом В – к колебательному контуру. «Земля» осциллографа и  генератора подключена к общей точке схемы.

             2.4. Вывести окно осциллографа. Для этого необходимо двойным щелчком левой клавиши мыши нажать на осциллограф, в появившемся окне нажать «Expand» :

            2.5. Запустить моделирование на 3-5 секунд с помощью выключателя моделирования. Нажимая одинарным щелчком левой  клавиши мыши на стрелки (1) и (2) (рисунок 5)  продвинуть получившуюся осциллограмму  влево или вправо до тех пор, пока на  экране не появятся 2 импульса, между которыми наблюдаются затухающие синусоидальные колебания.

При этом масштаб развёртки по времени осциллографа(Tame base) должен быть установлен равным 0.02ms/div. Развёртка по времени регулируется с помощью стрелок (3), по напряжению ( вольт на деление) канала А- стрелками(4), канала В - стрелками(5). Изменение цвета фона осуществляется нажатием на «Reverse».

 

                                      Рисунок – 5 Окно осциллографа

Изменить величину емкости С, прибавив к емкости значение С=3пФ*№варианта (№варианта соответствует № фамилии в списке группы).Рассчитанное значение емкости С необходимо взять за исходное.

          2.6. Запустить моделирование на 3-5 секунд с помощью выключателя моделирования. Зарисовать осциллограмму затухающих колебаний на миллиметровой бумаге.

          2.7.На полученной осциллограмме измерить две соседние амплитуды

ab и cd (см. рисунок 6).

         Для этого необходимо масштаб развёртки по времени осциллографа (Tame base) уменьшить. Нажать левой клавишей мыши на  стрелку (1) (рисунок 7) и удерживая её передвигать вертикальную линию до амплитудного значения колебаний. Точное значение напряжения  показывается в окне (2) (рисунок 7).

             Вычислить логарифмический декремент затухания колебаний G и добротность Q по формулам G = (abcd) / ab; Q = p/G; (p = 3,14).

                     Рисунок 6– Осциллограмма затухающих колебаний

 

                Рисунок  7 –  Измерение амплитудных значений

          2.8 Записать выражение для полученной осциллограммы напряжения (см.выражение 4).

              Определить:

начальную амплитуду колебаний U0m (см. рисунок 3, где ток I0m можно заменить на напряжение U0m);

  период колебаний T0 (интервал времени между двумя повторяющимися  

мгновенными значениями с учётом одинакового знака их изменения (см. рисунок 6).

  частоту колебаний f0 =1/Т0.

         угловую частоту w0 = 2πf0.

         длину волны сводных колебаний l0=c/f0, где с – скорость света.

2.9  Используя параметры L, C,R, рассчитать частоту свободных колебаний w0 (см. выражение7), характеристическое сопротивление r (см. выражение6), добротность Q (см. выражение 8), затухание d  (см. выражение 9), реактивные сопротивления ХL, XC  (см. выражение 10), постоянную времени цепи τц (см. выражение 2).

          2.10. Изменить индуктивность L,увеличив ее в два раза и повторить измерения и расчёты сделанные в п. 2.6, 2.7, 2.8, 2.9.

          2.11.Восстановить значение индуктивности L, сделав ее равной L=1.5mH,а изменить емкость С, увеличив ее в два раза, и повторить измерения и расчёты сделанные в п. . 2.6, 2.7, 2.8, 2.9.  

         2.12.. Изменить сопротивление R, сделав его последовательно равным R= 100Ом и R=5кОм. Убедиться в переходе от колебательного процесса к апериодическому (R>2ρ).

         2.13. Измеренные и рассчитанные данные занести в таблицу 1.

Таблица 1

№ пункта

Исходные данные

Экспериментальные данные

Расчетные параметры

L

С

R

U0m

T0

f0

w0

l0

Q

G

w0

r

Q

d

XL

XC

τц

1

2

3

4

5

На основании измерений и вычислений сделать выводы по свойствам свободных колебаний в реальном контуре.

          3 Отчёт должен содержать:

3.1. Тему и цель работы.

3.2. Перечень оборудования.

3.3. Краткие теоретические сведения.

3.4.Ход работы.

3.5. Таблицы с результатами измерений, рисунки, расчёты.

3.6. Выводы.

3.7.Ответы на контрольные вопросы.

4 Контрольные вопросы

4.1. Указать причину затухания свободных колебаний в реальных контурах.

4.2. Как влияет величина активного сопротивления на характер свободных колебаний?

4.3. От чего зависит частота свободных колебаний контура?

4.4. Каким образом можно получить в контуре апериодический процесс?

4.5. Какими параметрами оценивается качество контура?

4.6. По какому закону убывает амплитуда свободных колебаний?


UL
=L

r = rL+rC

+

C

UC=еC

i

L

r

+

(1)

;

(3)

(4)

(5)

(7)

t

i


 

А также другие работы, которые могут Вас заинтересовать

67817. ПРАВО КОРИСТУВАННЯ ПРИРОДНИМИ РЕСУРСАМИ 215.5 KB
  Об’єктивне право природокористування – сукупність екологічних норм, які визначають підстави виникнення, зміни та припинення права природокористування, встановлюють комплекс прав та обов’язків природокористувачів, формують юридичні засоби захисту прав та інтересів суб’єктів природокористування.
67818. КІНЕМАТИКА ПРОМИСЛОВИХ РОБОТІВ 154.5 KB
  Кожне тіло щовільно рухається в просторі має ортогональну систему координат і 6 степенів вільності свободи можливість руху вздовж кожної з осей і обертання навколо них. Проте як видно з рисунку вся сукупність переміщень кінематичних ланок руки людини зводиться до транспортних переносних рухів...
67819. ОСНОВИ ОРГАНІЗАЦІЇ ЗАБЕЗПЕЧЕННЯ МЕДИЧНИМ МАЙНОМ 135 KB
  Забезпечення медичним майном і медичною технікою організується і здійснюється з метою безперервного і повного задоволення потреб частин, підрозділів в них для надання медичної допомоги пораненим та хворим і їх лікування, проведення санітарно-гігієнічних...
67820. ПРАВОВЕ РЕГУЛЮВАННЯ ВИКОРИСТАННЯ НАДР 82.5 KB
  Приблизна вартість промислових запасів основних видів корисних копалин дорівнює більше 15 трлн. Всі мінеральносировинні ресурси України сконцентровані в: родовищах корисних копалин нагромадженнях мінеральних речовин в надрах на поверхні землі в джерелах вод та газів на дні водоймищ які за кількістю якістю...
67821. ПРИВОДИ ПРОМИСЛОВИХ РОБОТІВ 142 KB
  Крім того тип приводу визначає і можливості системи керування або ступінь інтелектуальності робота. Для виконання загальної конкретної технологічної операції необхідне групове керування виконавчими двигунами приводу тобото з погляду керування привід робота розглядається як система.
67822. ПРАВОВЕ РЕГУЛЮВАННЯ ВИКОРИСТАННЯ ВОД 91 KB
  В Україні розроблено законодавство, яке регулює правову охорону та режим використання водних об’єктів України та покликане сприяти формуванню водно-екологічного правопорядку і забезпечення екологічної безпеки населення України, а також більш ефективному, науково обґрунтованому використанню...
67823. УНІФІКОВАНІ ВУЗЛИ ПРОМИСЛОВИХ РОБОТІВ 1.18 MB
  В двох перших модулях можна виділити такі функціонально-конструктивні елементи: приводи; механізми перетворення і передачі руху; направляючі опори для лінійних і поворотних перміщень виконавчих органів; демпферуючі гальмівні пристрої; інформаційні давачі...
67824. Дополнительные возможности версии языка Object Pascal for Delphi 229.5 KB
  Начиная с версии Delphi 4, была реализована концепция перегрузки функций (overloading), которая позволяет иметь несколько различных функций или процедур с одинаковым именем, но с разными списками параметров. Такие процедуры и функции должны быть описаны с применением директивы overload...
67825. ПРАВОВЕ РЕГУЛЮВАННЯ ВИКОРИСТАННЯ ТА ОХОРОНИ АТМОСФЕРНОГО ПОВІТРЯ 92.5 KB
  Одним із основних життєво-важливих елементів навколишнього природного середовища є атмосферне повітря. Значення атмосферного повітря полягає в тому, що воно є основою для забезпечення життєдіяльності біологічних організмів, в тому числі людей, служить захистом...