12116

ИССЛЕДОВАНИЕ ИНТЕРФЕРЕНЦИИ МОНОХРОМАТИЧЕСКОГО СВЕТА В ОПЫТЕ ЮНГА

Лабораторная работа

Физика

PAGE 3 ИНТЕРФЕРЕНЦИЯ СВЕТА Лабораторная работа № 1 иССЛЕДОВАНИЕ ИНТЕРФЕРЕНЦИИ МОНОХРОМАТИЧЕСКОГО СВЕТА В ОПЫТЕ ЮНГА Цель работы: наблюдение интерференционной картины от двух отверстий освещенных лазером и определение расстояния между ними. ...

Русский

2013-04-24

312.5 KB

57 чел.

PAGE  3

ИНТЕРФЕРЕНЦИЯ СВЕТА

Лабораторная работа № 1

иССЛЕДОВАНИЕ ИНТЕРФЕРЕНЦИИ

МОНОХРОМАТИЧЕСКОГО СВЕТА В ОПЫТЕ ЮНГА

Цель работы: наблюдение интерференционной картины от двух отверстий, освещенных лазером, и определение расстояния между ними.

Оборудование гелий-неоновый лазер, пластинка с двумя отверстиями, экран, линза, линейка.

                            

Краткие теоретические  сведения

Явление интерференции света осуществляется при наложении когерентных световых волн от двух точечных источников света S1 и S2, находящихся на расстоянии d друг от друга (рис. 1).

Рис. 1

В некоторой точке пространства М происходит усиление или ослабление света в зависимости от величины разности хода между интерферирующими лучами света:   r2r1.

Максимальное усиление света наблюдается в тех точках пространства, для которых разность хода световых лучей равна целому числу длин волн или четному числу полуволн:

 ( = 0, 1, 2, 3,... – порядок интерференции).

Минимум интенсивности при ослаблении света наблюдается при условии, если разность хода   равна полуцелому числу длин волн или нечетному числу полуволн

 ( = 0, 1, 2, 3,....).

В целом интерференционная картина представляет собой систему чередующихся светлых и темных полос в некоторой плоскости Р, находящейся на расстоянии r от источников S1 и S2 (см. рис. 1). Когда расстояние r намного превосходит расстояние d между источниками света (при r>>d), можно считать, что

,         ,

где y – координата, определяющая положение интерференционной полосы относительно центра О интерференционной картины, что следует из подобия треугольников S1BS2 и МСО. В этом случае положение светлых и темных полос в положительном и отрицательном направлении оси y будет определяться формулой

За ширину интерференционной полосы принимают расстояние между центрами двух соседних светлых или темных полос:

y = ymym-1 = .

В данной работе ставится задача нахождения расстояния между источниками света S и S:

  =.  (1)

Описание установки

В опыте Юнга в качестве источников света S1 и S2 используются два отверстия в пластинке, помещаемой на пути лазерного луча. Поскольку лазерное излучение обладает большой пространственной когерентностью по всему поперечному сечению светового пучка, отверстия S1 и S2 представляют собой когерентные источники света, что является необходимым условием осуществления интерференции света. Для нахождения расстояния d между источниками, согласно (1), необходимо знать длину  волны лазерного излучения, расстояние r от отверстий до плоскости Р и ширину интерференционных полос. Непосредственные измерения y практически невозможны из-за мелкого масштаба наблюдаемой интерференционной картины. Поэтому между лазером и экраном помещают линзу L, дающую увеличенное изображение интерференционных полос на экране Э (рис. 2)

На рисунке y' соответствует увеличенному изображению ширины y интерференционной полосы, равной расстоянию между центрами  соседних светлых полос нулевого (m = 0) и первого (m = 1) порядков.

Из подобия треугольников АМО и  А'M'O следует:

 . (2)

Рис. 2

Расстояние  от плоскости Р до линзы L можно найти по формуле линзы:

,

где F – фокусное расстояние линзы. Тогда

.

Подставив это выражение в (2), получим

.

Учитывая, что

,

и подставляя выражение, полученное для y, в (1), получим формулу для вычисления расстояния между источниками света S1 и S2:

 d = .  (3)

Расстояние l от пластины с отверстиями до линзы, ширину наблюдаемой интерференционной полосы y' и расстояние а' от линзы до экрана Э измеряют с помощью линейки. Фокусное расстояние линз F указывается на установке. Длина волны излучения гелий-неонового лазера = 632,8 нм.

Порядок выполнения работы

1. Включить лазер и направить луч на экран.

2. Поставить на пути луча пластинку с отверстиями. На экране появится интерференционная картина.

3. Поместить между пластинкой с отверстиями и экраном линзу с известным фокусным расстоянием F для получения увеличенного изображения интерференционных полос.   

4. Измерить ширину y' интерференционных полос, полученных на экране. Для этого, положив лист бумаги на экран, отметить карандашом середины темных полос, измерить ширину нескольких полос и разделить ее на число полос.

5. Измерить расстояние l и а'.

6. Вычислить расстояние d по расчетной формуле (3).

7. Измерения провести  для трех различных положений линзы.

8. Определить среднее значение

<d> =

      9. Результаты измерений и вычислений занести в таблицу.

          10. Оценить абсолютную   и относительную   погрешности измерений по формулам:

 

                                    Таблица

li

ai', м 

Δyi'

di, м

<d>,м

|di<d>|, м

Δd

ε, %

1

2

3

λ = 632,8 нм

F =

Контрольные вопросы

1. Что такое интерференция света? Каковы условия ее осуществления?

2. Получить выражение для ширины интерференционных полос в опыте Юнга.

3. Почему в центре интерференционной картины в опыте Юнга наблюдается светлая полоса?

4. Как осуществить опыт Юнга от обычной лампочки накаливания, являющейся некогерентным источником света?

5. С какой целью используется линза в данной работе?

6. Получить условия максимума и минимума  интенсивности света в опыте Юнга.

7. Вывести формулу для определения расстояния между источниками света в опыте Юнга.

Библиографический список

к лабораторной работе № 1

1. Савельев, И. В. Курс общей физики: учеб. пособие / И. В. Савельев. – СПб.: Лань, 2005. – Т. 2. – § 120

2. Кингсеп, А. С. Основы физики / А.С. Кингсеп, Локшин, Г. Р., Ольхов, О. А.. – М., 2001. – ч. 3 гл. 7.


 

А также другие работы, которые могут Вас заинтересовать

84764. Общие принципы организации сетей. Основные понятия и определения 672.2 KB
  Средства вычислительной техники (СВТ) реализуют обработку данных и представляют собой совокупность ЭВМ, вычислительных комплексов и вычислительных систем различных классов. ЭВМ (электронная вычислительная машина, компьютер) совокупность технических средств, предназначенных для организации ввода...
84765. Требования к организации компьютерных сетей 439.39 KB
  Открытость возможность добавления в сеть новых компонентов узлов и каналов связи средств обработки данных без изменения существующих технических и программных средств; 2 гибкость сохранение работоспособности при изменении структуры сети в результате сбоев и отказов отдельных...
84766. Сетевые топологии 697.36 KB
  Следует различать физическую и логическую топологию сети. Физическая структурная топология отображает структурную взаимосвязь узлов сети. Логическая функциональная топология определяется функциональной взаимосвязью узлов сети то есть отображает последовательность передачи данных между узлами сети.
84767. Маршрутизация 495.88 KB
  Маршрутизация одна из основных функций компьютерной сети определяющая эффективность передачи данных. Проблема маршрутизации в компьютерных сетях аналогична проблеме организации автомобильного движения по улицам города и состоит в выборе в каждом узле сети направления передачи данных выходного...
84768. СРЕДСТВА ТЕЛЕКОММУНИКАЦИЙ 599.62 KB
  Для передачи электрических и оптических сигналов применяются электрические ЭЛС и волоконно-оптические ВОЛС линии связи соответственно. Передача электромагнитных сигналов осуществляется через радиолинии РЛС и спутниковые линии связи СЛС.
84769. Модуляция и кодирование данных 654.93 KB
  На основе непрерывного аналогового высокочастотного синусоидального сигнала называемого несущей аналоговая модуляция; на основе дискретного цифрового сигнала в виде импульсов импульсная или цифровая модуляция. Процесс преобразования дискретных данных представляемых дискретными первичными сигналами...
84770. Кабельные линии связи. Классификация кабельных линий связи 692.46 KB
  Классификация кабельных линий связи При организации компьютерных сетей широко используются кабельные линии связи. Кабельная линия связи КЛС линия связи состоящая из кабеля кабельной арматуры и кабельных сооружений туннели колодцы распределительные шкафы кабельные столбы.
84771. Телекоммуникационные сети. Классификация телекоммуникационных сетей 678.02 KB
  В зависимости от вида передаваемых данных телекоммуникационные сети делятся на: аналоговые сети; цифровые сети. К современным телекоммуникационным сетям предъявляются два основных требования: интеграция возможность передачи в сети данных разных типов неоднородного трафика предъявляющих разные...
84772. Суффикс. Представление о «суффиксе» 41 KB
  Организовать наблюдение за влиянием суффикса на значение слова. Познавательные: извлекать информацию критически оценивать понимать информацию в разных формах схемы модели ориентироваться в своей системе знаний отвечать на вопросы преобразовывать информацию проводить анализ сравнение...