12120

ИЗУЧЕНИЕ ДИФРАКЦИИ МОНОХРОМАТИЧЕСКОГО СВЕТА НА КРУГЛОМ ОТВЕРСТИИ

Лабораторная работа

Физика

Лабораторная работа № 5 ИЗУЧЕНИЕ ДИФРАКЦИИ МОНОХРОМАТИЧЕСКОГО СВЕТА НА КРУГЛОМ ОТВЕРСТИИ Цель работы: исследуя картину дифракции от круглого отверстия определить радиус этого отверстия. Оборудование: гелийнеоновый лазер телескопическая система линз насад

Русский

2013-04-24

502.5 KB

11 чел.

Лабораторная работа № 5

ИЗУЧЕНИЕ ДИФРАКЦИИ МОНОХРОМАТИЧЕСКОГО СВЕТА НА КРУГЛОМ ОТВЕРСТИИ

Цель работы: исследуя картину дифракции от круглого отверстия, определить радиус  этого отверстия.

Оборудование: гелий-неоновый лазер, телескопическая система линз, насадка на лазер, пластинка с отверстиями разного диаметра, линза.

Краткие теоретические сведения

Дифракция света представляет собой отклонение света от его прямолинейного распространения. Это явление возникает при наличии какого-либо препятствия на пути света (узкая щель, малое отверстие и т. д.).

Наблюдая дифракционную картину от круглого отверстия, можно определить радиус этого отверстия. Действительно, пусть плоская монохроматическая волна длиной падает на непрозрачную преграду с круглым отверстием радиуса r (рис. 1). 

Рис. 1

Волновую поверхность, входящую в отверстие, разобьем на кольцеобразные зоны (зоны Френеля) таким образом, чтобы расстояние от краев каждой зоны до точки  наблюдения Р отличалось на 2 (см. рис. 1). Если отверстие открывает четное число зон, то электромагнитные колебания, приходящие от соседних зон, взаимно погасят друг друга, и в точке Р будет наблюдаться минимум освещенности. Если отверстие открывает нечетное число зон, то в точке Р будет максимум освещенности. В случае дифракции Фраунгофера радиус отверстия можно определить по формуле

,  (1

где r – радиус отверстия; m – количество зон Френеля; b – расстояние от центра отверстия до точки наблюдения Р; – длина волны излучения.

Расстояние b измеряется на установке, длина волны излучения гелий-неонового лазера =632,8 нм. Для более точного определения числа пропускаемых через отверстие зон Френеля измерения проводятся для двух точекP1 и P2, находящихся на разных расстояниях от отверстия, для них количество зон Френеля в области отверстия отличается на некоторое целое число n.

Описание установки и методика измерений

Схема установки дана на рис. 2. Параллельный монохроматический пучок света от лазера 1 проходит через телескопическую систему линз 2 и падает на пластину с отверстиями 3. Телескопическая система предназначена для расширения диаметра светового пучка. Дифракционная картина, возникающая в точке Р1, отображается с помощью линзы 4 на сплошной экран 5 в точку Р1'. Если изменить положение линзы 4, то на экране получим дифракционную картину от другой точки наблюдения Р2.

Рис. 2

Пусть для точки Р1 открыто m зон, а для точки Р2 – на n зон меньше,
т. е.
m – n. Число n равно количеству переходов освещенности между максимумом и минимумом при перемещении линзы от положения "а" к положению "б" (рис. 3).

                                                           

Рис. 3

По формуле (1) определим радиус отверстия r для указанных положений линзы:

.                                 (2)

Решив совместно эти уравнения, получим

.  (3)

Из рис. 3 следует, что

.   (4)

Расстояния l1, l2 от пластины с отверстием до линзы измеряются непосредственно. Расстояния d1, d2 от дифракционной картины в точке Р1 или P2  до линзы вычисляются по известной "формуле линзы":

, (5)

где F – фокусное расстояние линзы; f1, f2 – расстояния от линзы до экрана 5 измеряются непосредственно на установке. Радиус отверстия r вычисляется по формуле (3).

Порядок выполнения работы

1. Включить лазер.

2. Собрать установку согласно рис. 2.

3. Установить линзу 4 так, чтобы на экране наблюдались одно или два кольца дифракционной картины и минимум освещенности в центре картины.

4. Определить значения l1 и f1.

5. Медленно приближая линзу 4 к экрану и наблюдая на экране изменение освещенности, отсчитать n = 5 переходов освещенности между минимумом и максимумом в центре картины.

6. Зафиксировав линзу после 5 изменений освещенности, определить расстояние l2 и f2.

7. По формулам (4) и (5) рассчитать величины d1, d2, b1, b2.

8. По формуле (3) рассчитать радиус отверстия r.

9. Повторить измерения 3 раза. Определить среднее значение <r>. Оценить погрешность измерения r.

10. Все результаты занести в таблицу.

                                                                                   Таблица

F

λ

l1

f1

d1

b1

n

l2

f2

d2

b2

r

<r>

1

2

3

Контрольные вопросы

1. Что такое зоны Френеля?

2. От чего зависит радиус зоны Френеля?

3. От чего зависит количество зон Френеля, открытых отверстием?

4. Как изменяется дифракционная картина при изменении положения линзы?

5. Вывести формулы (1) и (2).

6. Каковы особенности излучения лазера?

Библиографический список

к лабораторной работе № 5

1. Савельев, И. В. Курс общей физики: учеб. пособие / И. В. Савельев. – СПб.: Лань, 2005. – Т. 2. – гл. XVIII § 128.

2. Савельев, И. В. Курс общей физики. Волны. Оптика: учеб. пособие для втузов / И. В. Савельев. – М.: Астрель, 2003. – Т. 4. – гл. 5 § 5.4.

3. Кингсеп, А. С. Основы физики / А.С. Кингсеп, Локшин, Г. Р., Ольхов, О. А.. – М., 2001. – ч. 3 гл. 8.


 

А также другие работы, которые могут Вас заинтересовать

11322. Микропроцессор К580ВМ80 87.5 KB
  Занятие 1 Микропроцессор К580ВМ80 Учебные методические и воспитательные цели: 1. Изучить особенности построения универсального 8разрядного микропроцессора К580ВМ80. 2. Совершенствовать умение выделять главное для качественного конспектирования учебного материала. ...
11323. Микропроцессор К1810ВМ86 110 KB
  Занятие 2 Микропроцессор К1810ВМ86 Учебные методические и воспитательные цели: 1. Изучить особенности построения универсального 16разрядного микропроцессора К1810ВМ86 и принципы адресации его памяти.. 2. Формировать творческое мышление. 3. Прививать любовь к професси
11324. Применение универсальных микропроцессоров 102 KB
  Занятие 3 Применение универсальных микропроцессоров Учебные методические и воспитательные цели: 1. Изучить принципы построения и работы персонального компьютера и применение его для моделирования различных процессов. 2. Формировать творческое мышление. 3. Прив...
11325. Сигнальный процессор 144 KB
  Занятие 5 Сигнальный процессор Учебные и воспитательные цели: Изучить устройство и принципы функционирования сигнального процессора. Прививать умение выделять главное для качественного конспектирования учебного материала. Прививать интерес к дисцип
11326. Маркетингове дослідження ринку дезінфектантів та антисептиків 776 KB
  Антисептичні засоби для профілактики і лікування місцевих інфекційних захворювань (гнійних ран, опіків, пролежнів, виразок, фурункулів і т. п.) використовувалися з давніх часів. Гіппократ і Ібн Сіна, Парацельс і Гален застосовували в цих цілях бальзамічні мазі, винний і яблучний оцет, вапно, мурашину кислоту і різні спирти.
11327. Локальные вычислительные сети. Сети с шиной и кольцевой структурой 91 KB
  Локальные вычислительные сети. Учебные и воспитательные цели. Изучить и систематизировать знания по основным понятиям локальных вычислительных сетей.. Прививать умение выделять главное для качественного конспектирования учебного материала...
11328. Глобальная сеть Internet 209 KB
  Занятие 2. Глобальная сеть Internet. Учебные и воспитательные цели: 1. Изучить и систематизировать знания по глобальной сети Internet. 2. Прививать навыки активного и целенаправленного изучения учебного материала. 3. Воспитывать высокую воинскую дисциплину исполнительност
11329. Защита информации 151.5 KB
  Лекция 12 Защита информации Проблема защиты информации от несанкционированного неразрешенного доступа НСД заметно обострилась в связи с широким распространением локальных и особенно глобальных компьютерных сетей. Защита информации необходима для уменьшения в
11330. Глобальные сети 73.5 KB
  Глобальные сети Глобальные сети объединяют территориально рассредоточенные компьютеры которые могут находиться в различных городах и странах. Так как прокладка высококачественных линий связи на большие расстояния обходится очень дорого в глоб