12123

ИССЛЕДОВАНИЕ МАГНИТООПТИЧЕСКОГО ЭФФЕКТА ФАРАДЕЯ

Лабораторная работа

Физика

Лабораторная работа № 8 ИССЛЕДОВАНИЕ МАГНИТООПТИЧЕСКОГО ЭФФЕКТА ФАРАДЕЯ Цель работы: ознакомиться с основанным на эффекте Фарадея магнитооптическим методом наблюдения доменной структуры вычислить постоянную Верде V для ферримагнетика проверить закон Малюса....

Русский

2013-04-24

824 KB

8 чел.

Лабораторная работа № 8

ИССЛЕДОВАНИЕ МАГНИТООПТИЧЕСКОГО ЭФФЕКТА ФАРАДЕЯ

Цель работы: ознакомиться с основанным на эффекте Фарадея магнитооптическим методом наблюдения доменной структуры, вычислить постоянную Верде (V) для ферримагнетика, проверить закон Малюса.

Оборудование: микроскоп, поляризатор, анализатор, образец прозрачного ферримагнетика, источник света.

Краткие теоретические сведения

Вещества, способные вращать плоскость поляризации, называются оптически активными. Некоторые вещества становятся оптически активными в магнитном поле.

Впервые вращение плоскости поляризации при прохождении света через вещество, находящееся в магнитном поле, наблюдал Фарадей в 1846 году, поэтому это явление называется эффектом Фарадея. В магнитоупорядоченных веществах (ферромагнетиках, антиферромагнетиках, ферримагнетиках) угол поворота плоскости поляризации

j = V× l× Js ,                                                   (1)

где V – коэффициент пропорциональности, зависящий от свойства вещества, температуры, частоты (длины волны) света, называющийся постоянной Верде; l – путь света в веществе; Js – намагниченность вещества.

Направление вращения плоскости поляризации зависит от направления магнитного поля,  направления вектора намагниченности и направления распространения света.

В магнитоупорядоченных веществах имеются области самопроизвольной намагниченности до насыщения Js, которые называются доменами. Несмотря на это, без внешнего магнитного поля магнетики находятся в размагниченном состоянии, то есть проекция магнитного момента всего образца на любое направление равна нулю.

В магнетиках с одноосной анизотропией имеется направление, называемое осью легкого намагничивания, вдоль которого выстраиваются магнитные моменты в доменах. В этом случае энергия (магнитного происхождения) всего образца будет минимальной и магнетики будут находиться в устойчивых равновесных состояниях.

Доменная структура для тонкого образца (пленки с подложкой) из феррита-граната (ферримагнетики) с осью легкого намагничивания, направленной перпендикулярно плоскости образца, показана на рис. 1.

Оптическая схема, представленная на рис. 2, позволяет наблюдать доменную структуру визуально. При прохождении линейно-поляризованного света через соседние домены вектор `Е поворачивается в противоположных направлениях на равные углы j (рис. 3, а). Если анализатор расположить так, чтобы проекция векторов `Е, прошедших через соседние домены, на плоскость пропускания анализатора была одинаковой, то согласно закону Малюса и интенсивность света после прохождения через домены будет одинаковой, т. е. домены не будут видны (будут видны только переходные области между соседними доменами (доменные границы)). Таких положений два: параллельное расположение плоскости пропускания анализатора и поляризатора и скрещенное. На рис. 3, б эти положения обозначены цифрами 1 и 2 соответственно.

Если анализатор, находящийся в положении 1 и 2, повернуть на малый угол, то появится изображение доменов, контраст между которыми возрастает с увеличением угла поворота анализатора. Различие в контрасте между доменами максимально тогда, когда угол между одним из векторов `Е и плоскостью пропускания анализатора p/2. При вращении анализатора в противоположном направлении темные домены становятся светлыми, а светлые темными. Измерив угол поворота плоскости пропускания анализатора от положения 1 или 2 до максимального контраста между доменами, можно определить угол поворота плоскости поляризации j.

Так как угол j для исследуемых материалов меньше 45°, то в положении анализатора 1 интенсивность света больше, чем в положении 2. Измерения  более точны, если в исходном состоянии поле зрения темное, т. е. анализатор находится в положении 2. В этом случае плоскость пропускания анализатора надо повернуть на угол j, чтобы добиться наиболее темного изображения одного из доменов (рис. 3, в).

Рис. 1

Рис. 2

Рис. 3

Измерение угла поворота плоскости поляризации j для данного образца (по известной толщине l и намагниченности насыщения Js) позволяет определить  постоянную Верде (V) с помощью формулы (1).

По закону Малюса

где IА и IП – соответственно интенсивности света, прошедшие через анализатор и поляризатор. В данном случае для одного домена угол  и он будет темным, для другого  и он будет светлым (рис. 3, в). Согласно закону Малюса контраст между доменами  не изменится при изменении угла  на 180°. Это свойство доменной структуры  можно использовать для проверки закона Малюса.

Устройство установки

Основой установки является микроскоп (рис. 4). Микроскоп состоит из тубуса 1, закрепленного на штативе  со станиной 2.
В нижней части тубуса расположен объектив 3,
а в верхней – окуляр 4. В тубус вставлен также анализатор. Тубус помещен над предметным столиком 5, на котором находится кассета
с поляризатором и образцом феррит-граната. Столик может вращаться, и для отсчета его угла поворота, а следовательно, и поляризатора имеется шкала с указателем. Под столиком находится осветительная система 6, в качестве которой может использоваться зеркало или лампа накаливания. Лампа осветителя рассчитана на 220 В. Для наводки на резкость штатив можно перемещать винтом наводки-юстировки 7.

Порядок выполнения работы

1. Перемещая винт грубой наводки на резкость и микровинт, настроить микроскоп так, чтобы отчетливо была видна доменная структура.

2. Контраст между доменами зависит от взаимного расположения анализатора и поляризатора, поэтому при вращении как поляризатора, так и анализатора будет изменяться яркость доменов. В данной установке удобнее вращать поляризатор путем вращения предметного столика микроскопа.

3. Вращая столик микроскопа, найти положение, при котором домены не видны (а видны только доменные границы) и поле зрения будет темно-серым. Записать угол j0, соответствующий этому положению (рис. 3, б).

4. Вращать столик микроскопа до тех пор, пока контраст между доменами не станет наибольшим, при этом темные домены наблюдаются как темно-коричневые, а светлые — как желтые. Записать угол  j1 (рис. 3, в).

5. Вычислить угол поворота плоскости поляризации j:

j =½j1-j0½.

6. Описанные выше эксперименты выполнить 5 раз и вычислить среднее значение <j>, данные занести в табл. 1, в которой приведены значения толщины образца l и намагниченности Js.

Таблица 1

j0

j1

j

<j>

Js

l

V

1

4160

А/м

5×10-6

м

2

3

4

5

7. Из формулы (1) вычислить постоянную Верде.

8. Выполнить пункт 3. Вращать столик до тех пор, пока не увидите в окуляре первоначально наблюдаемое поле зрения. Записать угол j1 и вычислить угол поворота поляризатора j.

9. Данные занести в табл. 2, аналогичную табл. 1, исключая три последних столбца.

10. Обработать результаты и сделать выводы.

Контрольные вопросы

1. В чем заключается эффект Фарадея?

2. Почему не видны домены при двух положениях анализатора? Чем отличается поле зрения при этих положениях и почему?

3. Как измерить угол поворота плоскости поляризации, если за исходное положение взять светлое поле зрения, при котором домены не видны? Ответ проверьте экспериментально.

4. Почему изменяется контраст между доменами при повороте анализатора или поляризатора? При каком положении анализатора один из доменов будет наиболее темным? Соответствует ли это положение наибольшей яркости второго домена?

5. Изменится ли угол поворота плоскости поляризации, если прозрачный образец феррита-граната поместить на зеркальную поверхность и наблюдать доменную структуру в отраженном свете?

6. Изменится ли изображение доменной структуры, если перевернуть образец?

7. Как доказать, что в микроскоп видны домены? Свое предположение проверьте экспериментально.

Библиографический список

к лабораторной работе № 8

1. Савельев, И. В. Курс общей физики: учеб. пособие / И. В. Савельев. – СПб.: Лань, 2005. – Т. 2. – § 141.

2. Савельев, И. В. Курс общей физики. Волны. Оптика: учеб. пособие для втузов / И. В. Савельев. – М.: Астрель, 2003. – Т. 4. – гл. 6 § 6.8.

3. Кингсеп, А. С. Основы физики / А.С. Кингсеп, Локшин, Г. Р., Ольхов, О. А.. – М., 2001. –Т.1  – ч. 3 гл. 10.

4. Трофимова, Т. И. Курс физики / Т. И. Трофимова. – М., 1990. – § 135–136, 195.


 

А также другие работы, которые могут Вас заинтересовать

11578. Создание модели данных с помощью Allfusion ERwin Data Modeler 93.57 KB
  Лабораторная работа 4 по дисциплине: Проектирование и архитектура программного проектирования На тему: Создание модели данных с помощью Allfusion ERwin Data Modeler Цель работы: Знакомство с CASEсистемой Allfusion ERWin Data Modeler изучение основных принципов построения логической
11579. Создание логической модели данных с помощью Allfusion ERwin Data Modeler 106.68 KB
  Лабораторная работа 5 по дисциплине: Проектирование и архитектура программного проектирования На тему: Создание логической модели данных с помощью Allfusion ERwin Data Modeler Цель работы: Развитие логической модели. Ход работы: Как было указано выше связи определяют
11580. Создание физической модели данных с помощью Allfusion ERwin Data Modeler 122.49 KB
  Лабораторная работа 6 по дисциплине: Проектирование и архитектура программного проектирования На тему: Создание физической модели данных с помощью Allfusion ERwin Data Modeler Цель работы: Создание физической модели. Ход работы: Различают два уровня физической модели: ...
11581. Проект участка на базе станков с ЧПУ по изготовлению деталей колёсного тягача 2.08 MB
  Тема: Проект участка на базе станков с ЧПУ по изготовлению деталей колёсного тягача. Содержание. Аннотация. Введение. Характеристика объектов производства. Технологический раздел. Определение типа производства. Анализ технологичности дета
11582. Информационная безопасность в телекоммуникационных системах 420 KB
  Лабораторный практикум по дисциплине Информационная безопасность в телекоммуникационных системах / Уфимск. гос. авиац. техн. унт; Сост.:Ж.А. Сухинец А.И. Гулин. –Уфа2011. –20 с. Приводится описание двух лабораторных работ для исследования студентами основных методов к...
11583. Устройства на операционных усилителях 472 KB
  Лабораторная работа № 5 Устройства на операционных усилителях Цель работы Изучить назначение принцип действия свойства и возможные схемотехнические решения устройств на операционных усилителях. 2. Задание 1. Ознако...
11584. Знакомство с Маткадом 83.95 KB
  Лабораторная работа № 1. Тема: Знакомство с Маткадом. Цель: Ознакомить студентов с интерфейсом пакета Маткад особенностями работы в пакете научить производить простейшие вычисления. Ход работы. Задача 1. Войдите в Маткад. 1.Поиграйте красным крестиком на экране...
11585. ЛАБОРАТОРНАЯ РАБОТА №1. ЗНАКОМСТВО С МАТКАДОМ 231.29 KB
  ЛАБОРАТОРНАЯ РАБОТА №1. ЗНАКОМСТВО С МАТКАДОМ Найдите на рабочем столе ярлык Маткад щелкните мышью и войдите в пакет. Обратите внимание на то что вся работа в Маткаде должна проводиться на латинском английском алфавите. Рис.1 Окна после запуска После за
11586. ВЕКТОРЫ И МАТРИЦЫ 39.75 KB
  Лабораторная работа Векторы и матрицы Общие сведения Задачи линейной алгебры решаемые в MathCAD можно условно разделить на два класса. Первый это простейшие матричные операции которые сводятся к определенным арифметическим действиям над элементами матрицы. Они реал...