12130

ИЗУЧЕНИЕ ВНУТРЕННЕГО ФОТОЭЛЕКТРИЧЕСКОГО ЭФФЕКТА НА ФОТОСОПРОТИВЛЕНИИ

Лабораторная работа

Физика

КВАНТОВЫЕ ЭФФЕКТЫ Лабораторная работа № 15 ИЗУЧЕНИЕ ВНУТРЕННЕГО ФОТОЭЛЕКТРИЧЕСКОГО ЭФФЕКТА НА ФОТОСОПРОТИВЛЕНИИ Цель работы: построение вольтамперной и световой люксамперной характеристик и определение удельной чувствительности фотосопротивления. Об

Русский

2013-04-24

93 KB

17 чел.

КВАНТОВЫЕ ЭФФЕКТЫ

Лабораторная работа № 15

ИЗУЧЕНИЕ ВНУТРЕННЕГО ФОТОЭЛЕКТРИЧЕСКОГО ЭФФЕКТА НА ФОТОСОПРОТИВЛЕНИИ

Цель работы: построение вольт-амперной и световой (люкс-амперной) характеристик и определение удельной чувствительности фотосопротивления.

Оборудование: фотосопротивление, лампа накаливания, блок питания фотосопротивления, амперметр, вольтметр.

Краткие теоретические сведения

Внутренний фотоэффект заключается в изменении электропроводности полупроводников под действием электромагнитного излучения. Проводимость, возникающую под действием света, называют фотопроводимостью,
а полупроводники, в которых это явление имеет место, называют фотосопротивлениями или фоторезисторами.

Рассмотрим фотоэффект на основе зонной теории твердых тел. Согласно зонной теории валентная зона у полупроводников при температуре  T = 0K полностью занята электронами, а зона проводимости свободна (как у диэлектриков). Ширина запрещенной зоны W у полупроводников составляет ~0,01–1 эВ. Если приложить разность потенциалов к такому кристаллу, то ток в нем не возникает, так как в зоне проводимости нет свободных носителей заряда, а энергии, которую сообщает внешнее электрическое поле электронам, недостаточно для переброса их из валентной зоны в зону проводимости. Дополнительную энергию, необходимую для преодоления запрещенной зоны, электроны могут получить при нагревании кристалла или при облучении его светом (фотоэффект). В последнем случае электроны получают энергию от поглощения квантов излучения (фотонов). При этом энергия фотона h должна быть равна или больше ширины запрещенной зоны:

, (1)

где – частота излучения; h – постоянная Планка.

Поглотив фотон, электрон из валентной зоны переходит в зону проводимости (рис. 1, а). Незаполненное электроном энергетическое состояние
в валентной зоне соответствует положительно заряженной квазичастице, называемой «дыркой». Таким образом, каждый фотон освобождает пару «электрон – дырка». Под действием внешнего электрического поля электроны
и «дырки» в кристалле движутся упорядочено («дырки» вдоль поля, электроны против поля), обеспечивая собственную проводимость полупроводника.

Концентрация пар «электрон – дырка» и фототок пропорциональны числу фотонов, падающих на единицу поверхности кристалла за единицу времени, то есть интенсивности света.

У некоторых полупроводников и без освещения при комнатной температуре в зоне проводимости может находиться небольшое число термически возбужденных электронов. Они будут создавать темновую проводимость полупроводника и темновой ток.

Если частота падающего света такова, что энергия фотона меньше ширины запрещенной зоны (hv<W), то фотоэффект не наблюдается. Граничная частота 0, ниже которой фотоэффект не наблюдается, называется красной границей фотоэффекта (или фотопроводимости).

Для каждого вещества она имеет свое значение, определяемое шириной запрещенной зоны:

. (2)

В примесных полупроводниках фотопроводимость может возникать при поглощении фотонов с энергией, меньшей ширины запрещенной зоны. Это связанно с тем, что в примесном полупроводнике в запрещенной зоне имеются дополнительные уровни энергии, называемые примесными.

В полупроводнике n-типа примесные донорные уровни расположены вблизи «дна» зоны проводимости и полностью заняты электронами при
Т = 0 К (рис. 1, б). Электроны с донорных уровней переходят в зону проводимости при поглощении фотонов с энергией

. (3)

Возникшая при этом фотопроводимость – чисто электронная.

В полупроводнике р-типа примесные (акцепторные) уровни расположены вблизи «потолка» валентной зоны (рис. 1, в). При Т = 0 К акцепторные уровни свободны. Под действием света электроны из валентной зоны переходят на акцепторные уровни, если энергия падающих на кристалл фотонов hWA. В валентной зоне образуются «дырки», которые обуславливают «дырочную» фотопроводимость.

Рис. 1

Описание установки

Фотосопротивление (рис. 2, а) представляет собой слой 1 полупроводникового материала, нанесенного на изолирующую пластину 2. На кроях слоя расположены электроды 3, фотосопротивление монтируется в пластмассовом корпусе 4.

Рис. 2

Схема включения фотосопротивления ФС приведена на (рис. 2, б), где (S-источник света). При отсутствии освещения в цепи протекает ток, зависящий от приложенного напряжения и темнового сопротивления. Этот ток называется темновым. Его величина может быть очень малой или равной нулю. При освещении фотосопротивления ток возрастает. Разность между током при освещении и темновым током  называют фототоком.

Важнейшими характеристиками фотосопротивления являются его чувствительность, зависимость чувствительности от длины волны падающего излучения (спектральная характеристика), рабочее напряжение, темновое сопротивление, зависимость чувствительности от освещенности (световая характеристика), а также вольт-амперные характеристики темнового, светового и фототока.

Вольт-амперные характеристики фотосопротивлений–это зависимости фототока от приложенного напряжения при постоянной освещенности. Для некоторых фоторезисторов (например, из CdS и CdSe) они линейны в широкой области изменения напряжений. При очень больших освещенностях линейность этих зависимостей нарушается за счет нагрева чувствительного слоя фотосопротивления.

Отношение фототока к вызвавшему его появление лучистому потоку называется интегральной токовой чувствительностью:

, (4)

где Ф = ES – лучистый поток (Лм); Е – освещенность; S – площадь освещаемой поверхности фотосопротивления.

Поскольку чувствительность фотосопротивления зависит от длины волны излучения, при определении этой чувствительности указывают источник излучения.

Величина фототока зависит не только от лучистого потока, но и от напряжения. Поэтому при задании чувствительности необходимо либо указать рабочее напряжение, либо использовать понятие удельной чувствительности:

, (5)

где U – приложенное напряжение.

Порядок выполнения работы

1. Прикрыть фотосопротивление и снять вольт-амперную характеристику темнового тока IТ=ƒ(U), изменяя напряжение от 0 до 10 В через 1 В.

2. Установить фотосопротивление на расстоянии 40 см от лампы
и снять вольт-амперную характеристику тока при освещении
I=ƒ(U), при постоянной освещенности фотосопротивления. Напряжение менять, как указано в п.1.

3. Установить фотосопротивление на расстоянии 20 см от лампы и повторить измерения по п.2.

4. Вычислить фототок Iф и освещенность E по формулам:

,  (6)

где Jc – сила света, значение которой указано на приборе.

5. Все результаты измерений и вычислений записать в табл. 1.

Таблица 1

Напряжение U, B

1

2

3

4

5

6

7

8

9

10

Темновой ток IT

Ток при

Освещении I

Е1=

Е2=

Фототок IФ

Е1=

Е2=

6. Построить вольт-амперные характеристики фотосопротивления Iф = ƒ (U) при двух значениях освещенности Е1 и Е2.

7. Снять световые (люксамперные) характеристики фотосопротивления
I = ƒ(Е) при двух значениях напряжения 4 В и 8 В. Для этого, поддерживая напряжение постоянным, изменять расстояние от 80 см через 10 см, приближая лампу к фотосопротивлению, и измерять ток I.

8. Вычислить фототок Iф и освещенность Е по формулам (6). Результаты измерений и вычислений записать в табл. 2. Значения темнового тока взять из табл. 1.

Таблица 2

Расстояние r, см

Освещенность Е, лк

U2 = 4 B, IT = 

U2 = 8 B, IT = 

I

IФ

I

IФ

80

70

1. Построить люкс-амперные характеристики фотосопротивления
Iф = ƒ(Е) при двух значениях напряжения. Для этого на оси ординат отложить значения фототока в микроамперах, а на оси абсцисс – освещенность Е в люксах.

2. Вычислить по формуле (5) удельную чувствительность фотосопротивления при рабочем напряжении 10 В и освещенности на расстоянии 0,5 м.

Контрольные вопросы

1. Какие характеристики фотосопротивления исследуются в работе?

2. Что такое чувствительность фотосопротивления, удельная чувствительность?

3. Объясните внутренний фотоэффект в собственных и примесных полупроводниках с точки зрения зонной теории.

4. Что такое красная граница фотоэффекта?

5. Объясните возникновение темнового тока. От чего зависит величина темнового тока? Фототока?

6. Что такое внешний фотоэффект? Сформулируйте его законы. Запишите уравнение Эйнштейна для фотоэффекта.

Библиографический список

к лабораторной работе № 15

1. Савельев, И. В. Курс общей физики: учеб. пособие / И. В. Савельев. – СПб.: Лань, 2005. – Т. 3. – § 65.

2. Савельев, И. В. Курс общей физики. Волны. Оптика: учеб. пособие для втузов / И. В. Савельев. – М.: Астрель, 2003. – Т. 5. – гл. 9 § 9.6.


 

А также другие работы, которые могут Вас заинтересовать

50128. Визначення горизонтальної й вертикальної складових індукції магнітного поля Землі за допомогою земного індуктора 176 KB
  Визначення горизонтальної й вертикальної складових індукції магнітного поля Землі за допомогою земного індуктора. Вертикальну площину в якій лежить вектор а отже й вісь магнітної стрілки називають площиною магнітного меридіану. Прилад під'єднаний до затискачів мілівеберметр або балістичний гальванометр можна проградуювати так щоб він безпосередньо показував зміну магнітного потоку який пронизує витки індуктора. Нехай вісь індуктора орієнтована горизонтально в площині магнітного меридіана площина витків теж горизонтальна.
50129. Исследование процессов накопления и релаксации заряда в диэлектрических материалах 1.32 MB
  Определение постоянной времени RCцепи. Даже если цепь не содержит конденсаторов всегда присутствует электрическая емкость изоляции и в ней возникают токи смещения обусловленные изменением электрического поля во времени. В цепях постоянного тока распределение электрических зарядов на проводниках и токов на участках цепи стационарно то есть неизменно во времени. Если на какомто участке цепи происходят изменения силы тока или напряжения то другие участки цепи могут почувствовать эти изменения только через некоторое время которое по...
50130. Определение коэффициента термического расширения (объемного) жидкости 116 KB
  Цель работы: 1 измерить изменение объема воды при нагреве ее от 0 С до 90 С; 2 определить показатель коэффициента термического расширения. Особенный интерес представляет поведение воды в диапазоне температур 0 10 С. В данной работе исследуется изменение объема воды в диапазоне температур от 0 С до 40 90 С максимальная температура ограничена длиной измерительной трубки. Для проведения измерений в интервале 0 20 С термостат в начале работы заполняется смесью льда и воды что обеспечивает начальную температуру 0 С.
50131. ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ПЛОСКОПАРАЛЛЕЛЬНОЙ ПЛАСТИНЫ С ПОМОЩЬЮ МИКРОСКОПА 160 KB
  Углы падения отражения и преломления отсчитываются от нормали к границе раздела двух сред ON. Направления этих лучей определяются следующими законами геометрической оптики: луч падающий АО луч отраженный ОВ луч преломленный ОД и нормальON восстановленная в точке падения О лежат в одной плоскости; угол отражения NOB численно равен углу падения ON; синус угла падения i относится к синусу угла преломления r как скоростьсвета в первой среде υ1 относится к скорости света во второй среде υ2. 1 Последний закон в оптике известен как...
50132. Тактика гри у футболі. Індивідуальні, групові і командні дії в нападі і захисті 27.5 KB
  Індивідуальні групові і командні дії в нападі і захисті. Система гри - це основний спосіб гри команди який визначає особливості розташування і пересування гравців у захисті і нападі для досягнення успіху в матчі. Гра в захисті й нападі вимагає від гравців оперативного розвязання ігрових ситуацій використання різноманітних тактичних засобів. Тактика гри у футбол реалізується в індивідуальних групових і командних діях у нападі й захисті.
50134. ВЕРОЯТНОСТНО-ЭКОНОМИЧЕСКИЙ МЕТОД РАСЧЕТА СТАЛЬНЫХ КОНСТРУКЦИЙ 172.5 KB
  Принципиальное отличие этого метода от заложенного в нормы метода расчета по предельным состояниям состоит в том что в расчет вводится не нормативные или расчетные значения нагрузок и прочностных свойств конструкционных материалов а СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ их распределений СРЕДНИЕ ЗНАЧЕНИЯ И КОЭФФИЦИЕНТЫ ВАРИАЦИИ. Коэффициент надежности по ответственности не используется. Таблица 1 Статистические характеристики давления ВЕТРА Ветровой район Среднее значение давления ветра кПа кг м2 Коэффициенты вариации Vf k = qo I II III IV...
50135. ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ГАЗА МЕТОДОМ КЛЕМАНА-ДЕЗОРМА 92.5 KB
  Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: Введение Первый закон термодинамики утверждает что количество теплоты DQ сообщенное газу расходуется на изменение внутренней энергии газа DU и на работу А совершаемую газом: DQ = DU . Теплоемкостью газа называется величина равная количеству теплоты необходимой для нагревания данной массы газа на один кельвин. T0...
50136. Фреймы, плавающие фреймы, сегментирование изображения, формы, бегущая строка 46.5 KB
  Клик на сегментах Бегущая строка и Сегментированные изображения должен открывать файл с любой картинкой в новом окне. Страница с фреймами Бегущая строка top Бег.