12130

ИЗУЧЕНИЕ ВНУТРЕННЕГО ФОТОЭЛЕКТРИЧЕСКОГО ЭФФЕКТА НА ФОТОСОПРОТИВЛЕНИИ

Лабораторная работа

Физика

КВАНТОВЫЕ ЭФФЕКТЫ Лабораторная работа № 15 ИЗУЧЕНИЕ ВНУТРЕННЕГО ФОТОЭЛЕКТРИЧЕСКОГО ЭФФЕКТА НА ФОТОСОПРОТИВЛЕНИИ Цель работы: построение вольтамперной и световой люксамперной характеристик и определение удельной чувствительности фотосопротивления. Об

Русский

2013-04-24

93 KB

15 чел.

КВАНТОВЫЕ ЭФФЕКТЫ

Лабораторная работа № 15

ИЗУЧЕНИЕ ВНУТРЕННЕГО ФОТОЭЛЕКТРИЧЕСКОГО ЭФФЕКТА НА ФОТОСОПРОТИВЛЕНИИ

Цель работы: построение вольт-амперной и световой (люкс-амперной) характеристик и определение удельной чувствительности фотосопротивления.

Оборудование: фотосопротивление, лампа накаливания, блок питания фотосопротивления, амперметр, вольтметр.

Краткие теоретические сведения

Внутренний фотоэффект заключается в изменении электропроводности полупроводников под действием электромагнитного излучения. Проводимость, возникающую под действием света, называют фотопроводимостью,
а полупроводники, в которых это явление имеет место, называют фотосопротивлениями или фоторезисторами.

Рассмотрим фотоэффект на основе зонной теории твердых тел. Согласно зонной теории валентная зона у полупроводников при температуре  T = 0K полностью занята электронами, а зона проводимости свободна (как у диэлектриков). Ширина запрещенной зоны W у полупроводников составляет ~0,01–1 эВ. Если приложить разность потенциалов к такому кристаллу, то ток в нем не возникает, так как в зоне проводимости нет свободных носителей заряда, а энергии, которую сообщает внешнее электрическое поле электронам, недостаточно для переброса их из валентной зоны в зону проводимости. Дополнительную энергию, необходимую для преодоления запрещенной зоны, электроны могут получить при нагревании кристалла или при облучении его светом (фотоэффект). В последнем случае электроны получают энергию от поглощения квантов излучения (фотонов). При этом энергия фотона h должна быть равна или больше ширины запрещенной зоны:

, (1)

где – частота излучения; h – постоянная Планка.

Поглотив фотон, электрон из валентной зоны переходит в зону проводимости (рис. 1, а). Незаполненное электроном энергетическое состояние
в валентной зоне соответствует положительно заряженной квазичастице, называемой «дыркой». Таким образом, каждый фотон освобождает пару «электрон – дырка». Под действием внешнего электрического поля электроны
и «дырки» в кристалле движутся упорядочено («дырки» вдоль поля, электроны против поля), обеспечивая собственную проводимость полупроводника.

Концентрация пар «электрон – дырка» и фототок пропорциональны числу фотонов, падающих на единицу поверхности кристалла за единицу времени, то есть интенсивности света.

У некоторых полупроводников и без освещения при комнатной температуре в зоне проводимости может находиться небольшое число термически возбужденных электронов. Они будут создавать темновую проводимость полупроводника и темновой ток.

Если частота падающего света такова, что энергия фотона меньше ширины запрещенной зоны (hv<W), то фотоэффект не наблюдается. Граничная частота 0, ниже которой фотоэффект не наблюдается, называется красной границей фотоэффекта (или фотопроводимости).

Для каждого вещества она имеет свое значение, определяемое шириной запрещенной зоны:

. (2)

В примесных полупроводниках фотопроводимость может возникать при поглощении фотонов с энергией, меньшей ширины запрещенной зоны. Это связанно с тем, что в примесном полупроводнике в запрещенной зоне имеются дополнительные уровни энергии, называемые примесными.

В полупроводнике n-типа примесные донорные уровни расположены вблизи «дна» зоны проводимости и полностью заняты электронами при
Т = 0 К (рис. 1, б). Электроны с донорных уровней переходят в зону проводимости при поглощении фотонов с энергией

. (3)

Возникшая при этом фотопроводимость – чисто электронная.

В полупроводнике р-типа примесные (акцепторные) уровни расположены вблизи «потолка» валентной зоны (рис. 1, в). При Т = 0 К акцепторные уровни свободны. Под действием света электроны из валентной зоны переходят на акцепторные уровни, если энергия падающих на кристалл фотонов hWA. В валентной зоне образуются «дырки», которые обуславливают «дырочную» фотопроводимость.

Рис. 1

Описание установки

Фотосопротивление (рис. 2, а) представляет собой слой 1 полупроводникового материала, нанесенного на изолирующую пластину 2. На кроях слоя расположены электроды 3, фотосопротивление монтируется в пластмассовом корпусе 4.

Рис. 2

Схема включения фотосопротивления ФС приведена на (рис. 2, б), где (S-источник света). При отсутствии освещения в цепи протекает ток, зависящий от приложенного напряжения и темнового сопротивления. Этот ток называется темновым. Его величина может быть очень малой или равной нулю. При освещении фотосопротивления ток возрастает. Разность между током при освещении и темновым током  называют фототоком.

Важнейшими характеристиками фотосопротивления являются его чувствительность, зависимость чувствительности от длины волны падающего излучения (спектральная характеристика), рабочее напряжение, темновое сопротивление, зависимость чувствительности от освещенности (световая характеристика), а также вольт-амперные характеристики темнового, светового и фототока.

Вольт-амперные характеристики фотосопротивлений–это зависимости фототока от приложенного напряжения при постоянной освещенности. Для некоторых фоторезисторов (например, из CdS и CdSe) они линейны в широкой области изменения напряжений. При очень больших освещенностях линейность этих зависимостей нарушается за счет нагрева чувствительного слоя фотосопротивления.

Отношение фототока к вызвавшему его появление лучистому потоку называется интегральной токовой чувствительностью:

, (4)

где Ф = ES – лучистый поток (Лм); Е – освещенность; S – площадь освещаемой поверхности фотосопротивления.

Поскольку чувствительность фотосопротивления зависит от длины волны излучения, при определении этой чувствительности указывают источник излучения.

Величина фототока зависит не только от лучистого потока, но и от напряжения. Поэтому при задании чувствительности необходимо либо указать рабочее напряжение, либо использовать понятие удельной чувствительности:

, (5)

где U – приложенное напряжение.

Порядок выполнения работы

1. Прикрыть фотосопротивление и снять вольт-амперную характеристику темнового тока IТ=ƒ(U), изменяя напряжение от 0 до 10 В через 1 В.

2. Установить фотосопротивление на расстоянии 40 см от лампы
и снять вольт-амперную характеристику тока при освещении
I=ƒ(U), при постоянной освещенности фотосопротивления. Напряжение менять, как указано в п.1.

3. Установить фотосопротивление на расстоянии 20 см от лампы и повторить измерения по п.2.

4. Вычислить фототок Iф и освещенность E по формулам:

,  (6)

где Jc – сила света, значение которой указано на приборе.

5. Все результаты измерений и вычислений записать в табл. 1.

Таблица 1

Напряжение U, B

1

2

3

4

5

6

7

8

9

10

Темновой ток IT

Ток при

Освещении I

Е1=

Е2=

Фототок IФ

Е1=

Е2=

6. Построить вольт-амперные характеристики фотосопротивления Iф = ƒ (U) при двух значениях освещенности Е1 и Е2.

7. Снять световые (люксамперные) характеристики фотосопротивления
I = ƒ(Е) при двух значениях напряжения 4 В и 8 В. Для этого, поддерживая напряжение постоянным, изменять расстояние от 80 см через 10 см, приближая лампу к фотосопротивлению, и измерять ток I.

8. Вычислить фототок Iф и освещенность Е по формулам (6). Результаты измерений и вычислений записать в табл. 2. Значения темнового тока взять из табл. 1.

Таблица 2

Расстояние r, см

Освещенность Е, лк

U2 = 4 B, IT = 

U2 = 8 B, IT = 

I

IФ

I

IФ

80

70

1. Построить люкс-амперные характеристики фотосопротивления
Iф = ƒ(Е) при двух значениях напряжения. Для этого на оси ординат отложить значения фототока в микроамперах, а на оси абсцисс – освещенность Е в люксах.

2. Вычислить по формуле (5) удельную чувствительность фотосопротивления при рабочем напряжении 10 В и освещенности на расстоянии 0,5 м.

Контрольные вопросы

1. Какие характеристики фотосопротивления исследуются в работе?

2. Что такое чувствительность фотосопротивления, удельная чувствительность?

3. Объясните внутренний фотоэффект в собственных и примесных полупроводниках с точки зрения зонной теории.

4. Что такое красная граница фотоэффекта?

5. Объясните возникновение темнового тока. От чего зависит величина темнового тока? Фототока?

6. Что такое внешний фотоэффект? Сформулируйте его законы. Запишите уравнение Эйнштейна для фотоэффекта.

Библиографический список

к лабораторной работе № 15

1. Савельев, И. В. Курс общей физики: учеб. пособие / И. В. Савельев. – СПб.: Лань, 2005. – Т. 3. – § 65.

2. Савельев, И. В. Курс общей физики. Волны. Оптика: учеб. пособие для втузов / И. В. Савельев. – М.: Астрель, 2003. – Т. 5. – гл. 9 § 9.6.


 

А также другие работы, которые могут Вас заинтересовать

17895. Міжнародна економічна інтеграція 54 KB
  Лекція 3. Міжнародна економічна інтеграція 1. Зміст і форми міжнародної економічної інтеграції Міжнародна економічна інтеграція це процес господарськийполітичного об'єднання країн на основі розвитку глибоких стійких взаємозв'язків і розподілу праці між націонал
17896. Глобальні проблеми в світовій економіці на рубежі XX - XXI вв 82 KB
  Лекція 4. Глобальні проблеми в світовій економіці на рубежі XX XXI вв. 1. Екологічна криза як глобальна проблема Екологічна проблема має багатовікову історію проте вона загострилася з другої половини XIX в. у міру індустріалізації планети. За останні 100 років було знищено б...
17897. Природно-ресурсний потенціал сучасного світового господарства 79 KB
  Лекція 5. Природноресурсний потенціал сучасного світового господарства 1. Територія сільськогосподарські угіддя До природних ресурсів що все ширше використовуються в ході розвитку суспільства і створюють умови його існування в першу чергу відноситься земля. Зем
17898. Людські ресурси світового господарства 90 KB
  Лекція 6. Людські ресурси світового господарства 1. Чисельність і темпи зростання населення Землі Дані про чисельність населення отримують на основі регулярних загальних переписів населення що проводяться зазвичай один раз в 10 років а в проміжках між ними шляхом р...
17899. Науково-технічний потенціал і його роль в розвитку сучасного світового господарства 78.5 KB
  Лекція 7. Науковотехнічний потенціал і його роль в розвитку сучасного світового господарства 1. Загальне поняття і критерії оцінки науковотехнічного потенціалу Дія науковотехнічного прогресу на розвиток економіки і всіх сфер діяльності людського суспільства в су...
17900. Загальне поняття галузевої структури і роль сучасної промисловості в світовому господарстві 46 KB
  Лекція 8. Загальне поняття галузевої структури і роль сучасної промисловості в світовому господарстві 1. Загальне поняття галузевої структури Структура економіки багатопланове поняття розглядати яке можна з різних точок зору та яке показує співвідношення різних ...
17901. Сучасний стан і перспективи розвитку в головних галузевих комплексів світової економіки 105 KB
  Лекція 9. Сучасний стан і перспективи розвитку в головних галузевих комплексів світової економіки 1. Паливноенергетичний комплекс ПЕК його структура і тенденція розвитку Галузі ПЕК відносяться до капіталомістких галузей. У промисловості розвинених країнах де пред...
17902. Чинники, які впливають на міжнародні економічні позиції країни 58.5 KB
  ЕКОНОМІЧНА БЕЗПЕКА КРАЇНИ Лекція 10. Чинники які впливають на міжнародні економічні позиції країни Будьяка нація є складовою частиною світу. Якби не було прагнення яке можуть проявляти окремі країни якби не було бажання переважної більшості інших країн створити у ...
17903. Економічна безпека країни 75.5 KB
  Лекція 11. Економічна безпека країни 11.1. Поняття економічної безпеки Економічна безпека це стан національної економіки що забезпечує задоволення життєво важливих потреб країни в матеріальних благах незалежно від виникнення в світовій економічній системі або усере...