12135

КОЛОРИМЕТРИЧЕСКИЕ ИЗМЕРЕНИЯ ОПТИЧЕСКОЙ ПЛОТНОСТИ ПОГЛОЩЕНИЯ МОЛЕКУЛЯРНОГО КРАСИТЕЛЯ

Лабораторная работа

Физика

Лабораторная работа № 20 КОЛОРИМЕТРИЧЕСКИЕ ИЗМЕРЕНИЯ ОПТИЧЕСКОЙ ПЛОТНОСТИ ПОГЛОЩЕНИЯ МОЛЕКУЛЯРНОГО КРАСИТЕЛЯ Цель работы: Измерение пропускания и оптической плотности растворов красителей по точкам в ближней ультрафиолетовой 315400 нм и видимой областях спек

Русский

2013-04-24

199.5 KB

21 чел.

Лабораторная работа № 20

КОЛОРИМЕТРИЧЕСКИЕ ИЗМЕРЕНИЯ ОПТИЧЕСКОЙ

ПЛОТНОСТИ ПОГЛОЩЕНИЯ МОЛЕКУЛЯРНОГО КРАСИТЕЛЯ

Цель работы: Измерение пропускания и оптической плотности растворов красителей по точкам в ближней ультрафиолетовой (315-400 нм) и видимой областях спектра (400-760 нм) и ближней инфракрасной области (760-980 нм).

Оборудование: Колориметр фотоэлектрический компенсационный КФК-2, вода, водные растворы разных цветов.

Краткие теоретические сведения

При прохождении световой волны через вещество часть энергии волны затрачивается на возбуждение колебаний электронов. Частично эта энергия вновь возвращается излучению в виде вторичных волн, порождаемых электронами; частично же она переходит в энергию движения атомов, т. е. во внутреннюю энергию вещества. Поэтому интенсивность света при прохождении через вещество уменьшается — свет поглощается в веществе. Вынужденные колебания электронов, а следовательно, и поглощение света становятся особенно интенсивными при резонансной частоте.

Опыт показывает, что интенсивность света при прохождении через вещество убывает по экспоненциальному закону Бугера:

  (1)

Здесь  — интенсивность света на входе в поглощающий слой,
l — толщина слоя, к — постоянная, зависящая от свойств поглощающего вещества и называемая коэффициентом поглощения.

Продифференцировав соотношение (1), получим

   (2)

Из этого выражения следует, что убыль интенсивности на пути dl пропорциональна длине этого пути и значению самой интенсивности. Коэффициентом пропорциональности служит коэффициент поглощения.

Из формулы вытекает, что при l = 1/к интенсивность I оказывается в е раз меньше, чем . Таким образом, коэффициент поглощения есть величина, обратная толщине слоя, при прохождении которого интенсивность света убывает в е раз.

Коэффициент поглощения зависит от длины волны света  (или частоты ). У вещества, атомы (или молекулы) которого практически не воздействуют друг на друга (газы и пары металлов при невысоком давлении), коэффициент поглощения для большинства длин волн близок к нулю и лишь для очень узких спектральных областей (шириной в несколько сотых ангстрема) обнаруживает резкие максимумы. Эти максимумы соответствуют резонансным частотам колебаний электронов внутри атомов? Которые попадают в видимую и ультрафиолетовую области спектра. В случае многоатомных молекул обнаруживаются также частоты, соответствующие колебаниям атомов внутри молекул. Поскольку массы атомов в десятки тысяч раз больше массы электрона, молекулярные частоты намного меньше атомных – они находятся в инфракрасной области спектра.

В практических случаях для оценки поглощения пользуются параметрами T – пропускание (прозрачность) и D – оптическая плотность (через десятичный логарифм):

  ;   (3)

В практической работе, как правило, используется закон Бугера
в форме:

 ,  (4)

где  – коэффициент экстинкции вещества, л/мольсм;

с – концентрация вещества, моль/л;

lтолщина слоя, см.

или в логарифмической форме, когда оптическая плотность линейно зависит от концентрации:  

   (5)

Прибор КФК-2 предназначен для измерения в отделенных участках диапазона длин волн 315–980 нм, выделяемых светофильтрами, коэффициентов пропускания и оптической плотности растворов жидкости. Прибор обеспечивает измерение светопропускания Т от 100 % до 1 % и оптической плотности D от 0 до 2 с абсолютной погрешностью не более ±1 %. Спектральный диапазон работы колориметра выделяется одним из одиннадцати светофильтров с фиксированными длинами волн максимального пропускания. Характеристики светофильтров представлены в табл. 1.

Таблица 1

Светофильтры колориметра

Номер фильтра

Маркировка светофильтра на панели прибора

Длина волны

соответствующая максимуму

пропускания, нм

Ширина полосы пропускания, нм

1

315

3155

3515

2

364

3645

2510

3

400

4005

4510

4

440

44010

4015

5

490

49010

3510

6

540

54010

2510

7

590

59010

2510

8

670

6705

205

9

750

7505

205

10

870

8705

255

11

980

980

255

Принцип измерения коэффициента пропускания в приборе КФК-2 состоит в том, что на фотоприёмники направляются поочередно световые потоки — полный Ф0 и прошедший через исследуемую среду Ф и определяется отношение этих потоков Ф/Ф0. Реализуется этот принцип следующим образом (рис. 1). Свет от источников ИС, преобразованный узлом формирования светового луча УФЛ направляется через кюветное отделение К на фоторегистратор ФП1, работающий в области спектра 315—540 нм, и фоторегистратор ФП2, работающий в области спектра 590—980 нм.

Рис. 1. Функциональная схема колориметра КФК-2

При помощи коммутирующеустройства УК фоторегистраторы избирательно подключаются ко входу усилителя постоянного тока УПТ с показывающим прибором ИП на выходе. Усиленный сигнал, пропорциональный светопропусканию Т (оптической плотности D) раствора, измеряется стрелочным прибором ИП, шкала которого отградуирована в процентах светопропускания Т и единицах оптической плотности D раствора.

Коэффициент светопропускания исследуемого раствора определяется по отношению к растворителю (нулевому раствору). Поэтому вначале производят градуировку шкалы Т, т. е. устанавливают 100 % светопропускания для растворителя. С этой целью в световой поток помещают кювету, содержащую растворитель, и с помощью элементов регулировки электрической схемы прибора устанавливают такую чувствительность колориметра, при которой стрелка ИП установится на делении «100» шкалы Т.

Для определения светопропускания раствора кювету с растворитель заменяют кюветой, содержащей исследуемый раствор. Отклонение стрелки регистрирующего прибора в этом случае характеризует коэффициент светопропускания (оптическую плотность) раствора.

При градуировке шкалы возникает необходимость установки электрического нуля прибора, так как регулировка нуля влияет на регулировку конца шкалы. Регулировку нуля осуществляют соответствующим потенциометром электрические схемы прибора при перекрытом шторкой ШТ световом потоке. Шторка вводится в световой поток при открывании крышки кюветного отделения.

Учитывая при анализе спектральную характеристику светопропускания исследуемого раствора, в оптический канал вводят соответствующий светофильтр СФ (315, 364, 400, 490, 540, 590, 670, 750, 870, 980 нм).

Оптическая схема. Нить лампы 1 (рис. 2) конденсором изображается и плоскости диафрагмы 3. Это изображение объективом 4, 5 переносится в плоскость, расположенную на расстояние 300 мм от объекта с 10-кратным увеличением. Сформированный световой пучок проходит через теплозащитный светофильтр 6, нейтральный светофильтр 7, цветной светофильтр 8, кюветное отделение 10, защищенное стеклами 9 и 11, и поступает на пластинку 15, которая делит световой поток на два. Примерно 10 % светового потока направляется на фоторегистратор 14 (фотодиод ФД-24к) и 90 % на фоторегистратор 17 (фотоэлемент Ф-26). Для уравнивания фототоков, снимаемых с фоторегистратора 14 при работе с различными цветными светофильтрами, перед ним установлен светофильтр 13 из цветного стекла.

Рис. 2. Оптическая схема колориметра КФК-2

Матовые стекла 12 и 16 обеспечивают равномерность освещения фоторегистраторов.

Рабочая длина кювет в приборе–50, 30, 20, 10 и 5 мм.

Описание установки

Электрический фотоколориметр КФК-2 (рис 4) состоит из двух автономных блоков: оптического блока и блока питания, размещенных в одном корпусе. В комплект колориметра входит также микроамперметр. В оптическом блоке размещаются: осветитель, оправа с оптикой, светофильтры, кюветное отделение с кюветодержателями, фотометрическое устройство
с усилителем и элементами регулирования.

Рис. 4. Общий вид колориметра КФК-2

Конструкция механизма осветителя обеспечивает перемещение лампы в трех взаимно перпендикулярных направлениях. В оправу с оптикой встроены конденсор, диафрагма и объектив.

Цветные светофильтры (11 штук) вмонтированы в диск. В световой пучок светофильтры вводятся ручкой 8. Рабочее положение каждого светофильтра фиксируется. Блок–кюветодержатель для кюветы с эталонным раствором и для кюветы с исследуемым раствором устанавливается в кюветное отделение 7 так, чтобы две маленькие пружины находились с передней стороны. Переключение кювет в световом пучке производится поворотом ручки 6 до упора. При открытой крышке кюветного отделения шторка закрывает окно перед фотоприемниками. В фотометрическое устройство входят фотоэлемент Ф-26, фотодиод ФД-24к, светоделительная пластинка и усилитель.

На лицевой панели колориметра кроме ручек переключателей 6 и 8 расположены: ручка 5 – включение фоторегистратора и ступенчатой регулировки чувствительности электрической схемы, винт 2 (под шлиц) потенциометра для установки нуля шкалы, ручки 3 и 4 – потенциометр грубой
и точной установки показаний прибора. В блоке питания размещены стабилизаторы напряжения с выпрямителями и силовой трансформатор. Блок питания вдвигается по направляющим в оптический блок и электрически соединяется с ним через разъем. Выключатель сетевого напряжения расположен на стенке блока вверху. На верхней стенке корпуса колориметра установлен микроамперметр 1. На задней стенке крышки микроамперметра имеется гнездо для подключения цифрового вольтметра с пределом измерения 0,1В.

Методика измерений

При подготовке к работе прибор включают в сеть и в течение 15 мин. прогревают. Во время прогревания кюветное отделение должно быть открытым, при этом шторка перед фоторегистраторами перекрывает световой пучок и стрелка измерительного прибора располагается у нулевого деления на шкале коэффициентов пропускания Т. Если окажется, что стрелка смещена относительно нуля, её подводят с помощью потенциометра для установки нуля (см. рис. 4). Затем поворотом ручки 8 вводят необходимый по роду работы светофильтр, ручку 5 «Чувствительность» устанавливают в положение «1», а ручку «Установка 100, грубо» – в крайнее левое положение.

Измерение коэффициента пропускания (оптической плотности) выполняется следующим образом. В кюветное отделение помещают кювету с контрольным (нулевым) раствором, по отношению, к которому производится измерение, и крышку кюветного отделения закрывают. Ручками «Чувствительность», «Установка 100, грубо» и «Установка 100, точно» устанавливают по шкале Т отсчет «100». Затем поворотом ручки 5 кювету с эталонным раствором заменяют кюветой с исследуемым раствором и по шкале колориметра снимают отсчет, соответствующим коэффициенту пропускания исследуемого раствора в процентах, или по шкале D снимают отсчет в единицах оптической плотности. Измерения проводят 3–5 раз и окончательное значение измеренной величины определяют как среднее арифметическое.

При определении концентрации вещества в растворе соблюдают такую последовательность: выбор светофильтров, выбор кювет, построение градуировочного графика, измерение оптической плотности исследуемого раствора и определение концентрации вещества.

Проверка технического состояния прибора включает следующий операции: проверку чувствительности прибора, проверку смешения стрелки колориметра при освещённых фоторегистраторах, проверку показании колориметра по контрольным светофильтрам К1 и К2.

Работу по проведению перечисленных операций начинают спустя 15 мин после включения прибора и его прогрева. Перед включением прибора проверяют установку стрелки колориметра на нуль но шкале коэффициентов пропускания.

Проверку чувствительности прибора производят с целью убедиться в возможности установки отсчета «100» по шкале коэффициентов пропускания Т колориметра со всеми цветными светофильтрами. Проверку выполняют следующим образом. Ручку «Светофильтры» устанавливают о положение 315 нм, ручку «Чувствительность»—в положение «1», а ручку «Установка 100, грубо» — в крайнее левое положение. Эти положения ручек соответствуют минимальной чувствительности прибора. Затем ручками «Чувствительность», «Установка 100, грубо» и «Установка 100, точно» проверяют возможность установки отсчета «100» по шкале Т. Проверку чувствительности с остальными светофильтрами проводят аналогично.

Проверка смещения стрелки колориметра при освещенных фоторегистраторах проводится со светофильтрами 540 и 750 нм. Для этого при закрытой крышке кюветного отделения ручками «Чувствительность» и «Установка 100, грубо» и «Установка 100, точно» устанавливают отсчет «90» по шкале  колориметра. Через 5 мин определяют смещение стрелки, оно не должно быть более одного деления.

Проверка показаний колориметра по контрольным светофильтрам К2 и К1 выполняется следующим образом. Ручку «Светофильтры» устанавливают на 540 нм (светофильтры К1 и К2 аттестованы с включенным светофильтром 540 нм) и при закрытой крышке кюветного отделения устанавливают отсчет «100» по шкале коэффициентов пропускания Т. После этого в кюветное отделение (ближе к осветителю) без срезания светового пучка устанавливают контрольный светофильтр, закрывают крышку кюветного отделения и снимают повторный отсчет по шкале Т. Отсчет должен соответствовать коэффициенту пропускания контрольного светофильтра.

Измеренные коэффициенты пропускания каждого светофильтра не должны отличаться более чем на ±0,5 % от паспортного значения.

Порядок выполнения работы

1. Измерить светопропускание Т и оптическую плотность D двух цветных растворов красителей во всех 11 точках длин волн, соответствующих максимуму пропускания установленных светофильтров измерение провести в двух режимах: 1) относительно воздуха, 2) относительно эталонного раствора (растворителя).

2. Построить по точкам графики спектров пропускания Т() и спектров поглощения D() исследуемых растворов.

3. Построение провести в программе Microsoft Excel.

4. Оформить отчет в стандартной форме с титульным листом.

Контрольные вопросы

1. Что такое спектр пропускания, спектр поглощения?

2. В чем измеряется пропускание Т и оптическая плотность D?

3. Объяснить метод измерения светопропускания на приборе КФК-2.

4. Как можно измерить концентрацию растворенного вещества в растворе с помощью спектров пропускания (поглощения)?

5. Как применяется оптический метод измерения концентрации
в экологии?

Библиографический список

к лабораторной работе № 20

1. Стафеев, С. К. Основы оптики: учеб. пособие / Стафееев С. К., Боярский К. К., Башнина Г. Л. – СПб.:Питер, 2006 – гл.13

2. Савельев, И. В. Курс общей физики: учеб. пособие / И. В. Савельев. – СПб.: Лань, 2005. – Т. 2. – § 145.

3. Савельев, И. В. Курс общей физики: учеб. пособие для втузов / И. В. Савельев. – М.: Астрель, 2003. – Т. 4. – гл. 7 § 7.4.

4. Трофимова, Т. И. Курс физики / Т.И. Трофимова – М.: Высшая школа,2003 – гл. 24 §187


 

А также другие работы, которые могут Вас заинтересовать

38841. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПОДГОТОВКЕ, ОФОРМЛЕНИЮ И ЗАЩИТЕ ВЫПУСКНЫХ КВАЛИФИКАЦИОННЫХ (ДИПЛОМНЫХ) РАБОТ 196 KB
  Выполнение дипломной работы. Содержание дипломной работы. Оформление дипломной работы18 6. Оценка дипломной работы.
38842. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО НАПИСАНИЮ, ОФОРМЛЕНИЮ И ЗАЩИТЕ ВЫПУСКНЫХ КВАЛИФИКАЦИОННЫХ РАБОТ 365.5 KB
  Описаны требования к оформлению и защите выпускной квалификационной работы. Выпускные квалификационные работы выполняются в формах соответствующих определенным ступеням высшего профессионального образования: для квалификации степени бакалавр в форме выпускной квалификационной работы бакалавра; для квалификации дипломированный специалист в форме дипломной работы проекта; Основные цели выпускной квалификационной работы: 1 систематизация закрепление и расширение теоретических и практических знаний студентов по избранной...
38844. Методические рекомендации по выполнению дипломного проекта 1.19 MB
  Дипломная работа выполняется в форме дипломного проекта. Каждому студентудипломнику назначается руководитель проекта как правило из числа преподавателей вуза. Выпускная квалификационная работа выполняется в форме проекта в соответствии с утвержденным Советом вуза Положением о выпускной квалификационной работе.
38845. Экспертная система комплексного диагностирования линейной части магистрального газопровода ЭС «Диагностика ЛЧ МГ» 3.02 MB
  В рамках проделанной работы проведено детальное обследование предметной области, составлен перечень функциональных задач, исследованы аналоги автоматизированных систем, спроектирована инфологическая модель предметной области, реализована ЭС «Диагностика ЛЧ МГ»
38846. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ДИПЛОМНОЙ РАБОТЫ 186 KB
  Плеханова Кафедра документоведения и документационного обеспечения управления МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ДИПЛОМНОЙ РАБОТЫ Для студентов специальности 032001. Петраченко Методические указания к выполнению дипломной работы для студентов спец. Методические указания к выполнению дипломной работы разработаны преподавателями кафедры документоведения и документационного обеспечения управления Саратовского государственного социальноэкономического университета на основании требований государственных образовательных стандартов высшего...
38847. ДИПЛОМНА РОБОТА СПЕЦІАЛІСТА, ЇЇ МЕТА І ЗАВДАННЯ 253 KB
  Вона є кваліфікаційним документом на підставі якого Державна екзаменаційна комісія визначає рівень теоретичної підготовки випускника його готовність до самостійної роботи за фахом і приймає рішення про присвоєння кваліфікації. Працюючи над ДР студент має засвоїти навики правильної постановки проблеми та обґрунтування її актуальності формулювання мети і завдань дослідження побудови логічного плану оптимальної структури роботи з літературними джерелами і статистичною інформацією аналізу та оцінки різних аспектів діяльності організації...
38848. ДИПЛОМНОЕ ПРОЕКТИРОВАНИЕ 231.5 KB
  Оно проводится в целях выполнения квалификационной работы проекта соответствующей государственным требованиям к уровню подготовки инженера систематизации и закрепления знаний по образовательнопрофессиональной программе совершенствования умений их применения для решения задач в области мостостроения. Следует иметь в виду что основную ответственность за правильность принятых в проекте технических решений и всех данных несёт студент автор дипломного проекта. Темы дипломных проектов как правило соответствуют одному из направлений:...
38849. Курсовые и дипломные работы по теории обучения иностранным языкам: практические рекомендации для студентов вузов 592 KB
  Романовская Курсовые и дипломные работы по теории обучения иностранным языкам: практические рекомендации для студентов вузов Учебнометодическое пособие по теории обучения иностранным языкам Ульяновск 2008 ББК 81. Курсовые и дипломные работы по теории и методике обучения иностранным языкам: практические рекомендации для студентов вузов : учеб. Даются рекомендации по поиску и изучению литературы написанию теоретической части планированию и проведению эмпирического исследования подготовке и проведению защиты дипломной работы. Для студентов...