12143

Снятие и построение нагрузочных диаграмм

Лабораторная работа

Физика

ЛАБОРАТОРНАЯ РАБОТА 4. Тема: Снятие и построение нагрузочных диаграмм. Цель работы: Изучение режимов работы электрических двигателей и получение опытных данных для построения нагрузочных диаграмм и поверка мощности приводного двигателя. План про

Русский

2013-04-24

477.5 KB

21 чел.

ЛАБОРАТОРНАЯ РАБОТА 4.

    Тема: Снятие и построение нагрузочных диаграмм.

    Цель работы: Изучение режимов работы электрических двигателей и получение опытных данных для построения нагрузочных диаграмм и поверка мощности приводного двигателя.

    План проведения работы.

    1. Записать технические (паспортные) данные машин, аппаратов и контрольно-изметительных приборов.

    2. Собрать электрическую схему установки согласно схемы №2 и включить агрегат в работу для получения опытных данных нагрузочной диаграммы.

    3. Построить по данным опыта график нагрузочной диаграммы

I= f (t). По графику произвести проверочный расчет мощности электропривода и проверить соответствие электродвигателя по допустимой перегрузке.

    4. Составить отчет по выполненной работе.

    Описание лабораторной установки.

    Лабораторная установка для получения данных построения нагрузочных диаграмм представляет собой агрегат, состоящий из следующих машин:

    1. Испытуемого двигателя (М) - машины постоянного тока независимого возбуждения.

    2. Асинхронного двигателя с короткозамкнутым ротором, который связан с М ременной передачей.


    Перечень необходимых приборов.

    1. Двигатель постоянного тока                                     МИ-32

    Таблица 3. Технические данные электродвигателя

Тип эл. двигателя

РН , кВт

UН , В

IН , A

n , об/мин

Количество

МИ-32

0,76

220

4,0

2500

1

    2. Асинхронный двигатель с короткозамкнутым ротором  АОЛ 12-2

    3. Реле времени                                                    ВЛ-34

    4. Амперметр                                                       Э 37 В

    5. Реле промежуточное                                           РП 21-003

    6. Автоматический выключатель                               АП-50

    7. Сигнальная лампа                                              ЭП-220

    8. Ключ управления                                               ПКУ-316

    9.  Кнопки 1SB, 2SB                                               UН -500 В

    10. Тумблер.

    Порядок сборки схемы.

    1. Для сборки силовой части схемы необходимо собрать цепочки:

    1.1 Автоматический выключатель QF - верхние губки магнитного пускателя КМ;

    1.2 Нижние губки магнитного пускателя КМ- приводной двигатель М

    2. Для сборки цепи управления необходимо собрать цепочки:

    2.1   Параллельно кнопки 2SB подключается нормально открытый контакт КМ1;

    


    2.2 Фаза А - кнопка 1
SB - кнопка 2SB - катушка КМ - земля;

    2.3 Фаза А - реле времени КТ - земля;

    2.4 Катушка КМ - сигнальная лампа HL - земля.

    Примечание:

    Цепочки: фаза А -тумблер, S - катушки КТ1 и КТ2 -земля и на ключ управления SA собрана в самом стенде.

    Описание работы схемы.

    1. С центрального пульта управления включением кнопки 2 подается напряжение на стенд №1. Включить автоматический выключатель QF на лицевой панели стенда, при этом схема управления лабораторной работы №1 а окажется под напряжением.

    2. Для включения агрегата в повторно - кратковременном режиме необходимо переключить тумблер S в верхнее положение, тем самым подавая напряжение на катушки электронных реле времени КТ1, КТ2.

    3. Нормально открытые контакты с выдержкой времени KT1.1, КТ1.2, КТ1.3 будут включать, а нормально закрытые контакты с выдержкой времени КТ2.1, КТ2.2, КТ2.3 отключать промежуточные реле KL1, KL2, KL3, которые своими нормально открытыми контактами KL1.1, KL2.1, KL3.1 будут включать и выключать приводной двигатель.

    Например, когда контакт реле КТ1.1 замкнется, катушка промежу-точного KLI, получив питание, замкнет нормально закрытый контакт KL1.1, тем самым соберет цепочку: фаза А, нормально закрытый контакт кнопки 1SB, нормально открытый контакт KL1.1, катушки КМ, нормально закрытый контакт КК, земля. Катушка КМ, получив питание, включит приводной двигатель М, который приведет во вращение при помощи


ременной передачи испытуемый двигатель. Сигнальная лампа Н
L будет загораться при каждом включении приводного двигателя, т.к. она включена параллельно катушке КМ.

   4. При включении приводного двигателя, фиксируя время по секундо-меру, снимаем показания с амперметра. Результаты наблюдений заносим в таблицу 4.

         Таблица 4

п/п

1 положение

SA1 (A)

1 положение

SA1 (A)

1 положение

SA1 (A)

1 положение

SA1 (A)

1.

    5. По данным таблицы строится нагрузочная диаграмма.

    Рисунок 5. Нагрузочная диаграмма.

    6. График нагрузочной диаграммы строится в осях Iд= f (t).

    Проверка соответствия режиму работы согласно полученной опытным путем нагрузочной диаграммы, осуществляется методом средне - квадратичного тока по формуле


    I
ЭКВ= √(I12*t1+ I22*t2+ . . . In2*tn)/(t1+ t2+ . . . tn) .

    Полученное по этой формуле значение среднеквадратичного тока следует сравниваем с паспортными данными испытуемого двигателя, и если в результате окажется что Iэкв< Iном.дв то электродвигатель по нагреву выбран правильно.

    7. Для включения агрегата в продолжительном режиме необходимо переключить тумблер S в нижнее положение. Нажатием кнопки 2SB подать питание на катушку КМ, кнопка 2SB блокируется через нормально открытый контакт КМ1. Приводной двигатель включить в работу. Останов приводного двигателя осуществляется путем нажатия кнопки 1SB.

    Вывод: Изучили режимы работы электрических двигателей, по полученным опытным данным построили нагрузочную диаграмму, произвели проверочный расчет мощности электропривода и проверили соответствие электродвигателя по допустимой перегрузке.


    Рисунок 6.


 

А также другие работы, которые могут Вас заинтересовать

20246. Взаємодія повільних нейтронів 57 KB
  Зіткнення нейтрона з ядром може відбуватись двома шляхами: або 1без утворення проміжного ядра коли нейтрон розсіюється безпосередньо силовим полем ядрапружне та непружне розсіяння 2або з утворенням проміжного збудженого ядра з наступним його розпадом по одному з можливи каналів: Авипромінювання γ – квантів процес радіаційного захвату нейтрона ядром Б випромінювання заряджених частинок В ділення ядра В області повільних нейтронів енергія 1еВ основні процеси пружне ядерне розсіяння радіаційний захват нейтрона ядрома бо...
20247. Теорія капілярного віскозиметра 63.5 KB
  Віскозиметр – прилад для визначення в’язкості. Визначення в’язкості капілярним віскозиметром базується на законі Пуазейля і полягає в визначенні часу протікання визначеної кількості рідини або газу через вузькі трубки круглого прерізу при заданому перепаді тисків. Прилади для вимірювання в’язкості можна розділити на дві групи: 1Ті які використовують стаціонарні типи руху рідин капілярний метод метод падаючої кульки; 2 Використовуються нестаціонарні типи руху в основному обертальноколивальний рух коливання твердого тіла зануреного в...
20248. Розрахунок бінарної кореляційної функції числовими методами 61.5 KB
  Розглянемо як розрахувати бінарну кореляційну функцію цими методами: МК В окремих точках матимемо де середня кількість сусідів від відображаючої точки на відстані ri яка може бути обрахованою за наступною формулою: кількість сусідів у j – му положенні відображаючої точки S – кількість частинок в комірці. МД кількість частинок на відстані ri від μї частинки в момень часу n. l – кількість частинок в комірці р – кількість проміжків часу.
20249. Основи методу хвильової спектроскопії 89 KB
  З уширення спектральних ліній береться інформація про міжмолекулярну взаємодію. Є три причини уширення: 1.природня ширина ліній лише в основному стані нема уширення; 2.доплерівське уширення відбувається за рахунок молекул що знаходяться в тепловонму русі; 3.
20250. Термодинамічна теорія флуктуацій. Розподіл Гаусса. Флуктуації об’єму та температури 70.5 KB
  Термодинамічна теорія флуктуацій. Покладемо x0=0 то Врахуємо Підставимо 2 в 1 це фактично розподіл але треба знайти А функція розподілу Гауса або гаусіан для флуктуацій 3 загальна формула для знаходження флуктуацій основних фізичних величин однокомпонентної системи. 43 та порівняємо з : середньоквадратичні флуктуації об’єму ізотермічна стисливість середньоквадратичні флуктуації температури теплоємність при сталому V Висновки термодинамічної теорії флуктуацій: як...
20252. СОЦИАЛЬНАЯ ПОЛИТИКА 49 KB
  Стабилизация, приведение к устойчивости социальных отношений и социального положения; поддержание и стимулирование социальной и экономической активности населения; социальная поддержка и защита.
20253. Модельні теорії рівняння стану. Рівняння Френкеля 24.5 KB
  Модельні теорії рівняння стану. Це рівння стану належить до діркової теорії рівнянь стану. Рівняння стану Френкеля : Δυ – зміна об‘єму дірки при зміні термодинамічних параметрів; VpT – об‘єм що займає рідка система при тискові Р та температурі Т. В модельних теоріях рівняння стану постулюється структура речовини характер взаємодії і розміщення молекул чи атомів.
20254. Модельні теорії рівняння стану. Рівняння Ленарда – Джонса 95.5 KB
  Решітка має форму додекаедра об’єм якого а – стала решітки; 3 за межі комірки частинка не виходить але вона може покидати центр і рухатися в межах комірки; 4 частинки взаємодіють із потенціалом рух частинки в комірці відбувається в силовому полі; 5 ідея Ейнштейна – Грюнайзера: якщо одна частинка покинула центр то всі інші сидять в центрах своїх комірок. Якщо пакування щільне – середнє поле – сферично – симетричне бо комірки тотожні. інтеграл комірки на 1 част. db – об’єм комірки енергія середнього поля в будь – якій...