1215

Теоретическая схемотехника

Книга

Производство и промышленные технологии

Приставки для образования кратных и дольных единиц измерения. Теорема об эквивалентном преобразовании источников (генераторов). RC-цепи: изменения во времени напряжения и тока. Использование эмиттерных повторителей в качестве стабилизаторов напряжения. Улучшенная модель транзистора: усилитель с передаточной проводимостью. Простая логическая схема на транзисторах и диодах.

Русский

2013-01-06

3 MB

126 чел.

ВВЕДЕНИЕ 3

1. НАПРЯЖЕНИЕ, ТОК И СОПРОТИВЛЕНИЕ 4

1.1. Напряжение и ток 4

1.2. Взаимосвязь напряжения и тока: резисторы 7

1.3. Приставки для образования кратных и дольных единиц измерения 8

1.4. Сопротивление и резисторы. 9

РЕЗИСТОРЫ 11

3. Делители напряжения 13

4. Источники тока и напряжения 15

5. Теорема об эквивалентном преобразовании источников (генераторов) 17

6. Динамическое сопротивление, диоды 21

СИГНАЛЫ 22

7. Синусоидальные сигналы 22

9. Другие типы сигналов 22

10.  Логические уровни 25

11.  Источники сигналов 26

КОНДЕНСАТОРЫ И ЦЕПИ ПЕРЕМЕННОГО ТОКА 29

13. RC-цепи: изменения во времени напряжения и тока 31

14. Дифференцирующие цепи 36

15. Интегрирующие цепи 38

17. Трансформаторы 42

ДИОДЫ И ДИОДНЫЕ СХЕМЫ 44

25. Диоды 44

26. Выпрямление 46

27. Фильтрация в источниках питания 47

28. Схемы выпрямителей для источников питания 50

29. Стабилизаторы напряжения 52

30. Примеры использования диодов 54

31. Индуктивные нагрузки и диодная защита 61

2.01. Первая модель транзистора: усилитель тока 64

2.03. Эмиттерный повторитель 67

2.04. Использование эмиттерных повторителей в качестве стабилизаторов напряжения 74

2.05. Смещение в эмиттерном повторителе 77

2.06. Транзисторный источник тока 81

2.07. Усилитель с общим эмиттером 88

2.08. Схема расщепления фазы с единичным коэффициентом усиления 90

2.09. Крутизна 93

МОДЕЛЬ ЭБЕРСА-МОЛЛА ДЛЯ ОСНОВНЫХ ТРАНЗИСТОРНЫХ СХЕМ 96

2.10. Улучшенная модель транзистора: усилитель с передаточной проводимостью (крутизной) 96

2.11. Еще раз об эмиттерном повторителе 100

2.13. Еще раз об усилителе с общим эмиттером 102

2.14. Токовые зеркала 116

4.3. СХЕМА С ОБЩЕЙ БАЗОЙ 123

НЕКОТОРЫЕ ТИПЫ УСИЛИТЕЛЬНЫХ КАСКАДОВ 124

2.15. Двухтактные выходные каскады 124

2.16. Составной транзистор (схема Дарлингтона) 133

2.18. Дифференциальные усилители 137

2.19. Емкость и эффект Миллера 146

НЕКОТОРЫЕ ТИПИЧНЫЕ ТРАНЗИСТОРНЫЕ СХЕМЫ 151

2.21. Стабилизированный источник напряжения 151

2.22. Терморегулятор 151

2.23. Простая логическая схема на транзисторах и диодах 152

ПОЛЕВЫЕ ТРАНЗИСТОРЫ 153

3.01. Характеристики полевых транзисторов 157

3.02. Типы ПТ 162

3.03. Общая классификация ПТ 167

3.04. Выходные характеристики ПТ 171

3.05. Производственный разброс характеристик ПТ 175

ОСНОВНЫЕ СХЕМЫ НА ПТ 178

3.06. Источники тока на ПТ с р-n- переходом 180

3.07. Усилители на ПТ 184

13.11. Активная нагрузка. 190

3.08. Истоковые повторители 191

3.09. Ток затвора ПТ 196

ПТ в качестве переменных резисторов 203

КЛЮЧИ НА ПТ. 208

3.11. Аналоговые ключи на ПТ 209


ВВЕДЕНИЕ

Электроника имеет короткую, но богатую событиями историю. Первый ее период связан с простейшими передатчиками ключевого действия и способными воспринимать их сигналы приемниками, которые появились в начале нашего века. Затем наступила эпоха вакуумных ламп, на смену которой пришла эпоха дискретных элементов, которая сейчас перешла в эпоху твердотельной электроники на базе больших интегральных схем (БИС) и сверх больших интегральных схем (СБИС) на основе которых создают калькуляторы, вычислительные машины, функциональную электронику.

Наверное, стоит сказать и о том, что в истории развития электроники наблюдается тенденция уменьшения стоимости устройств при увеличении функциональности объема их производства. Стоимость электронной микросхемы, например, постоянно уменьшается по отношению к единице ее первоначальной стоимости по мере совершенствования процесса производства. На самом деле зачастую панель управления и корпус прибора стоят дороже, чем его электронная часть.

Наше пособие посвящено изучению основных закономерностей построения элементарных электронных схем и синтеза на их основе сложных функциональных узлов.

Первая глава пособия посвящена изучению основных понятий и элементов схемотехники. Во второй главе мы рассказываем об основных закономерностях построения электронных контуров на базе биполярных транзисторов.

Третья глава посвящена описанию принципов работы устройств с применением полевых транзисторов. В четвертой главе рассказывается об основных применениях рассмотренных ранее электронных контуров в функциональных узлах и устройствах.

Пятая глава посвящена основам цифровой схемотехники.  

1. НАПРЯЖЕНИЕ, ТОК И СОПРОТИВЛЕНИЕ

1.1. Напряжение и ток

Напряжение и ток - это количественные понятия, о которых следует помнить всегда, когда дело касается электронной схемы. Обычно они изменяются во времени, в противном случае работа схемы не представляет интереса.

Напряжение (условное обозначение U, иногда Е). Напряжение между двумя точками - это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т.е. первая точка имеет более отрицательный потенциал по сравнению со второй). Иначе говоря, это энергия, которая высвобождается, когда единичный заряд «сползает» от высокого потенциала к низкому. Напряжение называют также разностью потенциалов или электродвижущей силой (э.д.с.). Единицей измерения напряжения служит вольт.

Ток (условное обозначение I или J). Ток - это скорость перемещения электрического заряда в точке. Единицей измерения тока служит ампер. Ток величиной 1 ампер создается перемещением заряда величиной 1 кулон за время, равное 1 с. Условились считать, что ток в цепи протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, хотя электрон перемещается в противоположном направлении.

Запомните: напряжение всегда измеряется между двумя точками схемы, ток всегда протекает через точку в схеме или через какой-нибудь элемент схемы.

Говорить «напряжение в резисторе» нельзя - это неграмотно. Однако часто говорят о напряжении в какой-либо точке схемы. При этом всегда подразумевают напряжение между этой точкой и «землей», т. е. такой точкой схемы, потенциал которой всем известен.

Напряжение создается путем воздействия на электрические заряды в таких устройствах, как батареи (электрохимические реакции), генераторы (взаимодействие магнитных сил), солнечные батареи (фотогальванический эффект энергии фотонов) и т.п. Ток мы получаем, прикладывая напряжение между точками схемы.

В реальных схемах мы соединяем элементы между собой с помощью проводов, металлических проводников, каждый из которых в каждой своей точке обладает одним и тем же напряжением (по отношению, скажем, к земле). В области высоких частот или низких полных сопротивлений это утверждение не совсем справедливо, и в свое время мы обсудим этот вопрос. Сейчас же примем это допущение. Мы упомянули об этом для того, чтобы вы поняли, что реальная схема не обязательно должна выглядеть как ее схематическое изображение, так как провода можно соединять по-разному.

Запомните несколько простых правил, касающихся тока и напряжения.

1. Сумма токов, втекающих в точку, равна сумме токов, вытекающих из нее (сохранение заряда). Иногда это правило называют законом Кирхгофа для токов. Инженеры любят называть такую точку схемы узлом. Из этого правила вытекает следствие: в последовательной цепи (представляющей собой группу элементов, имеющих по два конца и соединенных этими концами один с другим) ток во всех точках одинаков.

2. При параллельном соединении элементов (рис.1) напряжение на каждом из элементов одинаково. Иначе говоря, сумма падений напряжения между точками А и В, измеренная по любой ветви схемы, соединяющей эти точки, одинакова и равна напряжению между точками А и В. Иногда это правило формулируется так: сумма падений напряжения в любом замкнутом контуре схемы равна нулю. Это закон Кирхгофа для напряжений.

3. Мощность (работа, совершенная за единицу времени), потребляемая схемой, определяется следующим образом:

Вспомним, как мы определили напряжение и ток, и получим, что мощность равна: (работа/заряд) • (заряд/время). Если напряжение U измерено в вольтах, а ток I - в амперах, то мощность Р будет выражена в ваттах. Мощность величиной 1 ватт - это работа в 1 джоуль, совершенная за 1 с (1 Вт = 1 Дж/с).

Мощность рассеивается в виде тепла (как правило) или иногда затрачивается на механическую работу (моторы), переходит в энергию излучения (лампы, передатчики) или накапливается (батареи, конденсаторы). При разработке сложной системы одним из основных является вопрос определения ее тепловой нагрузки (возьмем, например, вычислительную машину, в которой побочным продуктом нескольких страниц результатов решения задачи становятся многие киловатты электрической энергии, рассеиваемой в пространство в виде тепла).

В дальнейшем при изучении периодически изменяющихся токов и напряжений нам придется обобщить простое выражение для того, чтобы определять среднее значение мощности. В таком виде оно справедливо для определения мгновенного значения мощности.

1.2. Взаимосвязь напряжения и тока: резисторы

Тема эта очень обширна и интересна. В ней заключена суть электроники. Если попытаться изложить ее в двух словах, то она посвящена тому, как можно сделать элемент, имеющий ту или иную характеристику, выраженную определенной зависимостью между током и напряжением, и как его использовать в схеме. Примерами таких элементов служат резисторы (ток прямо пропорционален напряжению), конденсаторы (ток пропорционален скорости изменения напряжения), диоды (ток протекает только в одном направлении), термисторы (сопротивление зависит от температуры), тензорезисторы (сопротивление зависит от деформации) и т.д. Постепенно мы познакомимся с некоторыми экзотическими  представителями  этой плеяды; а сейчас рассмотрим наиболее распространенный элемент - резистор (рис.2).

1.3. Приставки для образования кратных и дольных единиц измерения

Следующие приставки приняты для образования кратных и дольных единиц измерения в научной и инженерной практике:

Множитель

Приставка

Обозначение

1012

тера

Т

109

гига

Г

106

мега

М

103

кило

к

10-3

милли

м

10-6

микро

мк

10-9

нано

н

10-12

пико

пк

10-15

фемто

ф

При сокращенном обозначении дольных единиц измерения соответствующая приставка и условное обозначение единицы пишутся слитно. Обратите внимание на использование прописных и строчных букв, особенно м и М в приставках и обозначениях единиц 1 мВт - это 1 милливатт, или тысячная доля ватта; 1 МГц - это 1 миллион герц. Полные наименования единиц измерения всегда пишутся со строчной буквы, даже если они образованы от имен собственных. Полное наименование единицы измерения с приставкой также всегда пишется со строчной буквы. Прописные буквы используются для условных сокращений единиц измерения. Например: герц и килогерц, но Гц и кГц; ватт, милливатт и мегаватт, но Вт, мВт и МВт.

1.4. Сопротивление и резисторы. 

Интересно, что ток, протекающий через металлический проводник (или другой материал, обладающий некоторой проводимостью) пропорционален напряжению, приложенному к проводнику. На самом деле это не всегда так. Например, ток, протекающий через неоновую лампу, представляет собой нелинейную функцию от приложенного напряжения (он сохраняет нулевое значение до критического значения напряжения, а в критической точке резко возрастает). То же самое можно сказать и о целой группе других элементов - диодах, транзисторах, лампах и др.

Резисторы изготавливают из проводящего материала (графита, тонкой металлической или графитовой пленки или провода, обладающего невысокой проводимостью, тонких и толстых пленок). К каждому концу резистора прикреплен провод. Резистор характеризуется величиной сопротивления

R= U/I;

сопротивление R измеряется в омах, напряжение U - выражается в вольтах, а ток I - в амперах. Это соотношение носит название «закон Ома». Резисторы наиболее распространенного  типа - углеродистые композиционные - имеют сопротивление от 1 ома (1 Ом) до десятков мегаом. Резисторы характеризуются также мощностью, которую они рассеивают в пространство (наиболее распространены резисторы с мощностью рассеяния 1/4 Вт) и такими параметрами, как допуск (точность), температурный коэффициент, уровень шума, коэффициент напряжения (показывающий, в какой степени сопротивление зависит от приложенного напряжения). стабильность во времени, индуктивность и пр.

Последовательное и параллельное соединение резисторов. Из определения сопротивления следует несколько выводов:

1. Сопротивление двух последовательно соединенных резисторов (рис.3) равно:

Rобщ=R1+R2

При последовательном соединении резисторов всегда получаем большее сопротивление, чем сопротивление отдельного резистора.

2. Сопротивление двух параллельно соединенных резисторов (рис.4) равно 1/Rобщ = 1/R1+1/R2

При параллельном соединении резисторов всегда получаем меньшее сопротивление, чем сопротивление отдельных резисторов. Сопротивление измеряется в омах (Ом). На практике, когда речь идет о резисторах с сопротивлением более 1000 Ом (1 кОм), иногда оставляют только приставку, опуская в обозначении «Ом», т.е. резистор с сопротивлением 10 кОм иногда обозначают как 10 К, а резистор с сопротивлением 1 Мом - как 1 М.

РЕЗИСТОРЫ

Типы резисторов почти столь же многочисленны, как и схемы, в которых они применяются. Резисторы используются в усилителях, в качестве нагрузки для активных устройств, в схемах смещения и в качестве элементов обратной связи. Вместе с конденсаторами они используются для задания постоянной времени и работают как фильтры. Они служат для установки величин рабочих токов и уровней сигналов. В схемах питания резисторы используются для уменьшения напряжения за счет рассеяния мощности, для измерения токов и для разряда конденсаторов после снятия питания. В прецизионных схемах они помогают устанавливать нужные токи, обеспечивать точные коэффициенты пропорциональности для напряжения, устанавливать точные коэффициенты усиления. В логических схемах резисторы выступают в качестве конечных элементов линий и шин, «повышающих» и «понижающих» элементов. В высоковольтных схемах резисторы служат для измерения напряжений, для выравнивания токов утечки через диоды или конденсаторы, соединенные последовательно. На радиочастотах они используются даже в качестве индуктивностей.

Промышленность выпускает резисторы с сопротивлением от 0,01 Ом до 1012 Ом и мощностью от 1/8 до 250 Вт с допуском от 0.005 до 20%. Резисторы изготавливают из графитовых смесей, металлических пленок, проводов, накрученных на каркас, или на основе полупроводниковых элементов, подобных полевым транзисторам. Наиболее распространены углеродистые композиционные резисторы, имеющие мощность 1/4 или 1/2 Вт. Существует стандартный диапазон значений сопротивлений - от 1 Ом до 100 МОм, причем для резисторов с допуском на сопротивление, равным 5%, выпускается в два раза больше значений сопротивлений, чем для резисторов с допуском 10%.

В схемах, где требуется высокая точность или стабильность, следует использовать резисторы из металлической пленки с допуском 1%. Они обеспечивают стабильность не хуже 0,1% в нормальных условиях и не хуже 1 % в самых жестких условиях. Прецизионные проволочные резисторы способны удовлетворить наиболее высоким требованиям.

Если ожидается, что мощность, рассеиваемая в схеме, будет составлять более 0,1 Вт, то следует выбрать резистор с большим значением рассеиваемой мощности. Композиционные углеродистые резисторы характеризуются мощностью до 2 Вт, а мощные проволочные резисторы - более высокими значениями.

Упражнение 1. Какую мощность будет рассеивать в пространство резистор с сопротивлением 1 Ом, подключенный к батарее автомобиля с напряжением 12 В?

Упражнение 2. Докажите справедливость формул для сопротивления последовательного и параллельного соединения резисторов.

Секрет резисторов, соединенных параллельно: начинающие часто приступают к сложным алгебраическим выкладкам или углубляются в законы электроники, а здесь как раз лучше всего воспользоваться интуитивным правилом. Приступим теперь к освоению интуитивных правил и развитию интуиции.

Вход и выход. Практически во всех электронных схемах что-либо подается на вход (обычно это напряжение) и соответственно снимается с выхода (это также чаше всего напряжение). Например, с выхода усилителя звуковой частоты снимается напряжение (оно имеет переменное значение), которое в 100 раз превышает входное напряжение (изменяющееся аналогично). В этом усилителе выходное напряжение рассматривается для данного значения напряжения, действующего на входе. Инженеры пользуются понятием передаточной функции Н, которая представляет собой отношение напряжения, измеренного на выходе, к напряжению. действующему на входе: для вышеупомянутого усилителя звуковой частоты Н-это постоянная величина (Н = 100).

3. Делители напряжения

Мы приступаем к рассмотрению делителя напряжения, который используется в электронных схемах весьма широко. В любой настоящей схеме можно найти не меньше полдюжины делителей напряжения. Простейший делитель напряжения - это схема, которая для данного напряжения на входе создает на выходе напряжение, которое является некоторой частью входного. Простейший делитель представлен на рис 5. Что такое Uвых? Предположим здесь и далее, что нагрузки на выходе нет, тогда ток определяется следующим образом:

(Мы воспользовались формулой для определения сопротивления резистора и правилом для последовательного соединения резисторов). Тогда для Uвых

Обратите внимание, что выходное напряжение всегда меньше входного (или равно ему); поэтому мы говорим о делителе напряжения. Если одно из сопротивлений будет отрицательным, то можно получить усиление (т.е. выходное напряжение будет больше входного). Эта идея не так невероятна, как кажется на первый взгляд: вполне можно сделать устройство с отрицательными «приращениями» сопротивления (в качестве примера может служить туннельный диод) или просто с настоящим отрицательным сопротивлением (например, преобразователь с отрицательным сопротивлением, о котором мы поговорим позже).

Делители напряжения часто используют в схемах для того, чтобы получить заданное напряжение из большего постоянного (или переменного) напряжения. Например, если в качестве R2 взять резистор с регулируемым сопротивлением (рис.6а), то мы получим не что иное, как схему с управляемым выходом; более простым путем комбинацию R1-R2 можно получить, если у вас есть один резистор с переменным сопротивлением, или потенциометр (рис.6б). Простой делитель напряжения играет важную роль и в тот момент, когда вы задумываете схему:

входное напряжение и сопротивление верхней части резистора могут представлять собой, скажем, выход усилителя, а сопротивление нижней части резистора - вход последующего каскада. В этом случае, воспользовавшись уравнением для делителя напряжения, можно определить, что поступит на вход последнего каскада.

4. Источники тока и напряжения

Идеальный источник напряжения - это «черный ящик», имеющий два вывода, между которыми он поддерживает постоянное падение напряжения независимо от величины сопротивления нагрузки. Это означает, например, что он должен порождать ток, равный I = U/R. если к выводам подключить резистор с сопротивлением R. Реальный источник напряжения не может дать ток, больший некоторого предельного максимального значения, и в общем случае он ведет себя как идеальный источник напряжения, к которому последовательно подключен резистор с небольшим сопротивлением. Очевидно, чем меньше сопротивление этого последовательно подключенного резистора, тем лучше. Например, стандартная щелочная батарея на 9 В в последовательном соединении с резистором, имеющим сопротивление 3 Ом, ведет себя как идеальный источник напряжения 9 В и дает максимальный ток (при замыкании накоротко) величиной 3 А (который, к сожалению, погубит батарею за несколько минут). По понятным причинам источник напряжения «предпочитает» нагрузку в виде разомкнутой цепи, а нагрузку в виде замкнутой цепи «недолюбливает». Условные обозначения источников напряжения приведены на рис.7.

Идеальный источник тока - это «черный ящик», имеющий два вывода и поддерживающий постоянный ток во внешней цепи независимо от величины сопротивления нагрузки и приложенного напряжения. Для того чтобы выполнять свои функции, он должен уметь поддерживать нужное напряжение между своими выводами. Реальные источники тока (самая нелюбимая тема для большинства учебников) имеют ограниченный диапазон, в котором может изменяться создаваемое ими напряжение (он называется рабочим диапазоном выходного напряжения или просто диапазоном), и, кроме того, выходной ток источника нельзя считать абсолютно постоянным. Источник тока «предпочитает» нагрузку в виде замкнутой цепи, а нагрузку в виде разомкнутой цепи «недолюбливает».   Условные   обозначения источника тока приведены на рис.8.

Хорошим примером источника напряжения может служить батарея (для источника тока подобной аналогии найти нельзя). Например, стандартная батарейка от карманного фонаря обеспечивает напряжение 1,5 В, ее эквивалентное последовательное сопротивление составляет 1/4 Ом, а общий запас энергии равен приблизительно 10000 Вт*с (постепенно эти характеристики ухудшаются; к концу срока службы батарейки напряжение может составлять около 1 В, а внутреннее сопротивление - несколько ом). В электронных устройствах, за исключением портативных, батарейки используются редко.

5. Теорема об эквивалентном преобразовании источников (генераторов)

Теорема об эквивалентном преобразовании источников утверждает, что всякую схему, состоящую из резисторов и источников напряжения и имеющую два вывода, можно представить в виде эквивалентной схемы, состоящей из одного резистора R, последовательно подключенного к одному источнику напряжения U. Представьте, как это удобно. Вместо того чтобы разбираться с мешаниной батарей и резисторов, можно взять одну батарею и один резистор (рис.9). (Кстати, известна еще одна теорема об эквивалентном преобразовании, которая содержит такое же утверждение относительно источника тока и параллельно подключенного резистора).

Как определить эквивалентные параметры Rэкв и Uэкв для заданной схемы? Оказывается просто. Uэкв - это напряжение между выводами эквивалентной схемы в ее разомкнутом (ненагруженном) состоянии; так как обе схемы работают одинаково, это напряжение совпадает с напряжением между выводами данной схемы в разомкнутом состоянии (его можно определить путем вычислений, если схема вам известна, или измерить, если схема неизвестна). После этого можно определить Rэкв если учесть, что ток в эквивалентной схеме, при условии, что она замкнута (нагружена), равен Uэкв/Rэкв. Иными словами,

Uэкв = U (разомкнутая схема).

Rэкв = U (разомкнутая схема)/I (замкнутая схема).

Эквивалентное сопротивление источника и нагрузка схемы. Как мы только что убедились, делитель напряжения, на который подается некоторое постоянное напряжение, эквивалентен некоторому источнику напряжения с последовательно подключенным к нему резистором, например, делитель напряжения  10 кОм-10 к0м, на который подается напряжение от идеальной батарейки напряжением 30 В, в точности эквивалентен идеальной батарейке напряжением 15 В с последовательно подключенным резистором с сопротивлением 5 кОм (рис 10).

 

Подключение резистора в качестве нагрузки вызывает падение напряжения на выходе делителя, обусловленное наличием некоторого сопротивления источника (вспомним эквивалентное сопротивление для делителя напряжения, если его выход выступает в качестве источника напряжения). Очень часто это явление нежелательно. Один подход к решению проблемы создания «устойчивого» источника напряжения (называемого «устойчивым» в том смысле, что он не поддается действию нагрузки) состоит в использовании в делителе напряжения резисторов с малыми сопротивлениями. Иногда этот прямой подход оказывается полезным. Однако лучше всего для создания источника напряжения, или как его часто называют, источника питания, использовать активные компоненты, такие, как транзисторы или операционные усилители, которыми мы займемся позднее. Этот подход позволяет создать источник напряжения, внутреннее сопротивление которого (или эквивалентное сопротивление) составит миллиомы.

Понятие эквивалентного внутреннего сопротивления применимо ко всем типам источников, а не только к батареям и делителям напряжения. Все источники сигналов (например, генераторы синусоидальных сигналов, усилители и измерительные приборы) обладают эквивалентным внутренним сопротивлением. Подключение нагрузки, сопротивление которой меньше или даже сравнимо с внутренним сопротивлением, вызывает значительное уменьшение выходного параметра. Нежелательное уменьшение напряжения (или сигнала) разомкнутой цепи за счет подключения нагрузки называется «перегрузкой цепи». В связи с этим следует стремиться к тому, чтобы выполнялось условие Rнагр>>Rвнутр, так как высокоомная нагрузка оказывает небольшое ослабляющее влияние на источник (рис 11). Условие высокоомности является обязательным для таких измерительных приборов, как вольтметры и осциллографы. (Есть и исключения из этого общего правила, например, когда речь пойдет о линиях передач на радиочастотах, вы узнаете, что следует «согласовывать импедансы» для предотвращения отражений и потерь энергии.

Преобразование энергии. Задумайтесь над таким интересным вопросом, каким должно быть сопротивление нагрузки, чтобы при данном сопротивлении источника ей была передана максимальная мощность? Термины «сопротивление источника» «внутреннее сопротивление» и «эквивалентное сопротивление» относятся к одному и тому же сопротивлению. Нетрудно заметить, что при выполнении условий Rн = 0 и  Rн = ∞ переданная мощность равна нулю. Условие Rн=0 означает, что Uн =0, а Iн= Uн/Rн и поэтому Рн =0. Условие Rн=∞ означает, что Uн=Uн и Iн=0, поэтому Рн =0. Максимум заключен следовательно, между 0 и ∞.

Чтобы приведенный пример не вызвал у вас неправильного впечатления, хотим еще раз подчеркнуть, что обычно схемы проектируют таким образом, чтобы сопротивление нагрузки было значительно больше, чем внутреннее сопротивление источника сигнала, работающего на эту нагрузку

6. Динамическое сопротивление, диоды

Часто приходится иметь дело с электронными устройствами, в которых ток I не пропорционален напряжению U. В подобных случаях нет смысла говорить о сопротивлении, так как отношение U/I не является постоянной величиной независимой от U а, наоборот, зависит от U. Для подобных устройств полезно знать наклон зависимости U-I (вольт-амперной характеристики). Иными словами, представляет интерес отношение небольшого изменения приложенного напряжения к соответствующему изменению тока через схему ∆U/∆I (или dU/dI). Это отношение измеряется в единицах сопротивления (в омах) и во многих расчетах играет роль сопротивления. Оно называется сопротивлением для малых сигналов, дифференциальным сопротивлением, динамическим или инкрементным сопротивлением. Вольт-амперная характеристика диодов приведена ниже.

СИГНАЛЫ

7. Синусоидальные сигналы

Синусоидальные сигналы распространены наиболее широко, математическое выражение, описывающее синусоидальное напряжение, имеет вид

U =Asinft,

где А -амплитуда сигнала, f-частота в герцах. Синусоидальный сигнал показан на рис.13.

Можно также воспользоваться понятием угловая частота и переписать выражение для синусоидального сигнала в другом виде:

U = A sinωt,

где ω-угловая частота в радианах в 1 с. Если вы вспомните, что ω = 2πf, то все станет на свои места.

Основное достоинство синусоидальной функции (а также основная причина столь широкого распространения синусоидальных сигналов) состоит в том, что эта функция является решением целого ряда линейных дифференциальных уравнений, описывающих как физические явления, так и свойства линейных цепей.

9. Другие типы сигналов

Линейно-меняющийся сигнал. Линейно-меняющийся сигнал (показан на рис.14) - это напряжение, возрастающее (или убывающее) с постоянной скоростью. Это напряжение, конечно, не может расти бесконечно. Поэтому обычно такое напряжение имеет вид, показанный на графике рис.15,-напряжение нарастает до конечного значения, или на графике рис.16-пилообразное напряжение.

Треугольный сигнал. Треугольный сигнал приходится «ближайшим родственником» линейно-меняющемуся сигналу; отличие состоит в том, что график треугольного сигнала является симметричным (рис.17).

Сигналы шумов. Сигналы, о которых пойдет речь, очень часто смешивают с шумами, имея в виду только тепловые случайные шумы. Шумовые напряжения характеризуются частотным спектром (произведение мощности на частоту в герцах) и распределением амплитуд. Одним из наиболее распространенных типов шумовых сигналов является белый шум с гауссовым распределением в ограниченном спектре частот. Для такого сигнала произведение мощности на частоту в герцах сохраняется постоянным в некотором диапазоне частот, а вариации амплитуды для большого числа измерений мгновенного значения описываются распределением Гаусса. Шумовой сигнал такого типа генерирует резистор (шум Джонсона), и он создает неприятности при всевозможных измерениях, в которых требуется высокая чувствительность. На экране осциллографа мы видим шумовой сигнал таким, как он показан на рис.18. Более подробно шумовые сигналы и способы борьбы с шумовыми помехами будут рассмотрены в гл. 7. В разд. 9.32-9.35 рассматриваются вопросы генерации шумовых сигналов.

Прямоугольные сигналы. График изменения прямоугольного сигнала во времени показан на рис.19. Как и синусоидальный, прямоугольный сигнал характеризуется амплитудой и частотой. Если на вход линейной схемы подать прямоугольный сигнал, то сигнал на выходе вряд ли будет иметь прямоугольную форму. Для прямоугольного сигнала эффективное значение равно просто амплитуде. Форма реального прямоугольного сигнала отличается от идеального прямоугольника; обычно в электронной схеме время нарастания сигнала гн составляет от нескольких наносекунд до нескольких микросекунд. На рис.20 показано, как обычно выглядит скачок прямоугольного сигнала. Время нарастания определяется как время, в течение которого сигнал нарастает от 10 до 90% своей максимальной амплитуды.

Импульсы. Импульсы - это сигналы, показанные на рис.21. Они характеризуются амплитудой и длительностью импульса. Если генерировать периодическую последовательность импульсов, то можно говорить о частоте, или скорости повторения импульса, и о «рабочем цикле». равном отношению длительности импульса к периоду повторения (рабочий Цвкл лежит в пределах от 0 до 100%). Импульсы могут иметь положительную или отрицательную полярность (пьедестал), кроме того, они могут быть нарастающими или спадающими. Например. второй импульс, показанный на рис.21, является убывающим импульсом положительной полярности (или спадающим импульсом с положительным пьедесталом). Сигналы в виде скачков и пиков. Сигналы в виде скачков и пиков упоминаются часто, но широкого применения не находят. К их помощи прибегают для описания работы схем. Если попытаться их нарисовать, то они будут выглядеть так, как показано на рис.22. Скачок представляет собой часть прямоугольного сигнала, а пик-это два скачка, следующие с очень коротким интервалом.

10.  Логические уровни

Импульсы и прямоугольные сигналы широко используются в цифровой электронике. В цифровой схеме состояние любой точки в любой момент времени определяют заранее известные уровни напряжения. Эти уровни называют просто «ВЫСОКИЙ» и «НИЗКИЙ». Они соответствуют значениям «ложь» (0) и «истина» (1) булевой алгебры логики, которая имеет дело с переменными, принимающими эти значения.

В цифровой электронике точные значения напряжений не играют роли. Задача состоит в том, чтобы различать только уровни напряжения. В связи с этим для каждого семейства цифровых логических элементов определены допустимые значения высокого и низкого уровня напряжения. Например, большинство логических элементов работает от напряжения + 5 В, при этом выходные уровни составляют 0 В (низкий уровень) и 5 В (высокий уровень), а порог срабатывания на входе равен 2,5 В. Реальные значения выходного напряжения могут составлять 1 В относительно «земли» или + 5 В, но без учета ложного срабатывания. О логических уровнях речь пойдет позднее.

11.  Источники сигналов

Нередко источник сигнала входит как неотъемлемая часть в саму схему. Но для испытательного режима работы очень удобен отдельный независимый источник сигнала. В качестве такого источника могут выступать три типа приборов: генераторы (синусоидальных) сигналов, генераторы импульсов и генераторы функций (сигналов специальной формы).

Генераторы (синусоидальных) сигналов. Генераторами сигналов называют генераторы синусоидальных колебаний, которые обычно обеспечивают широкий диапазон частот (как правило, от 50 кГц до 50 МГц) и приспособлены для «тонкой» регулировки амплитуды (для этой цели используется схема резистивного делителя, называемого аттенюатором). В некоторых генераторах предусмотрена возможность модуляции выходного сигнала. Одной из разновидностей генератора сигнала является свип-генератор (генератор качающейся частоты) - он может периодически производить развертку выходной частоты в некотором диапазоне частот. Это качество прибора очень полезно при испытаниях схем, свойства которых определенным образом зависят от частоты (например, резонансные схемы или фильтры). В наши дни эти и многие другие приборы выпускаются в исполнении, позволяющем задавать (программировать) частоту, амплитуду и другие параметры с помощью вычислительной машины или другого цифрового устройства.

Еще одной разновидностью генераторов сигналов является синтезатор частот - устройство, которое позволяет производить точную установку частоты генерируемых синусоидальных колебаний. Частота задается цифровым способом, часто с точностью до восьми или более знаков после запятой, и синтезируется с помощью точного эталона кварцевого генератора цифровыми методами, о которых речь пойдет позже (в разд. 9.27-9.31). Если перед вами когда-нибудь будет стоять задача получения сигнала с абсолютно достоверным, точным значением частоты, то без синтезатора ее не решить.

Генераторы импульсов. Генераторы импульсов всего лишь формируют импульсы, но как совершенно они выполняют свою задачу. В них предусмотрена возможность регулировки ширины (длительности) импульса, частоты повторения. амплитуды, времени нарастания и других параметров. Кроме того, многие генераторы позволяют генерировать пары импульсов с заданными интервалами и частотой повторения и даже кодовые последовательности импульсов. В большинстве современных генераторов импульсов предусмотрены логические выходы, обеспечивающие легкое сопряжение с цифровыми схемами. Как и в генераторах синусоидальных сигналов, в генераторах импульсов часто предусмотрено внешнее программирование.

Генераторы функции (специальных сигналов). Во многих отношениях генераторы функций являются наиболее гибкими из всех источников сигналов. Они позволяют формировать синусоидальные, треугольные, прямоугольные сигналы в очень широком диапазоне частот (от 0,01 Гц до 10 МГц), при этом предусмотрена возможность регулировки амплитуды и смещения по постоянному току (постоянное напряжение, добавляемое к сигналу). Многие генераторы функций могут производить развертку частоты, причем в нескольких режимах (линейное или логарифмическое изменение частоты во времени). Промышленность выпускает генераторы функций с импульсным выходом (правда, они не обладают гибкостью генераторов импульсов) и возможностью модуляции выходного сигнала.

Промышленность выпускает также программируемые и цифровые генераторы функций. В цифровых генераторах значения частоты (а иногда и амплитуды) оплывается в цифровом виде. В последние годы семейство генераторов функции пополнилось синтезирующим генератором функции (генератором-синтезатором функций) - устройством, которое сочетает в себе гибкость генератора функций со стабильностью и точностью синтезатора частот.

КОНДЕНСАТОРЫ И ЦЕПИ ПЕРЕМЕННОГО ТОКА 

Особенно следует подчеркнуть роль конденсаторов и индуктивностей - без них не обходится почти ни одна схема. Они используются при генерации колебаний, в схемах фильтров, для блокировки и шунтирования сигналов. Их используют в интегрирующих и дифференцирующих схемах. На основе конденсаторов и индуктивностей строят схемы формирующих фильтров для выделения нужных сигналов из фона.

Конденсаторы

Конденсатор (рис.23) это устройство, имеющее два вывода и обладающее следующим свойством:

Q = CU.

Конденсатор, имеющий емкость С фарад, к   которому   приложено   напряжение   U вольт, накапливает заряд Q кулон на одной пластине и — Q-на другой.

В первом приближении конденсаторы - это частотно-зависимые резисторы. Они позволяют создавать, например, частотно-зависимые делители напряжения. Для решения некоторых задач (шунтирование, связывание контуров) больших знаний о конденсаторе и не требуется, другие задачи (построение фильтров, резонансных схем, накопление энергии) требуют более глубоких знаний. Например, конденсаторы не рассеивают энергию, хотя через них и протекает ток - дело в том, что ток и напряжение на конденсаторе смещены друг относительно друга по фазе на 900.

Продифференцировав выражение для Q , получим

I = C(dU/dt).

Итак, конденсатор-это более сложный элемент, чем резистор; ток пропорционален не просто напряжению, а скорости изменения напряжения. Если напряжение на конденсаторе, имеющем емкость 1 Ф, изменится на 1 В за 1 с, то получим ток 1 А. И наоборот, протекание тока 1 А через конденсатор емкостью 1 Ф вызывает изменение напряжения на 1 В за 1 с. Емкость, равная одной фараде, очень велика, и поэтому чаще имеют дело с микрофарадами (мкФ) или пикофарадами (пФ). Например, если подать ток 1 мА на конденсатор емкостью 1 мкФ, то напряжение за 1 с возрастет на 1000 В. Импульс тока продолжительностью 10 мс вызовет увеличение напряжения на конденсаторе на 10 В (рис.24).

Чтобы получить большую емкость, нужны большая площадь и меньший зазор между проводниками, обычно для этого один из проводников покрывают тонким слоем изолирующего материала (называемого диэлектриком). Широкое распространение получили следующие типы конденсаторов: керамические, электролитические (изготовленные из металлической фольги с оксидной пленкой   в   качестве   изолятора),   слюдяные (изготовленные   из    металлизированной слюды).   Каждому   типу   конденсаторов присущи свои качества. В общем можно сказать, что для некритичных схем подходят керамические, в схемах, где требуется   большая   емкость,   применяются танталовые конденсаторы, а для фильтрации  в  источниках  питания  используют электролитические конденсаторы.

Параллельное и последовательное соединение конденсаторов. Емкость нескольких параллельно соединенных конденсаторов равна сумме их емкостей. Для последовательного соединения конденсаторов имеем такое же выражение, как для параллельного соединения резисторов.

Ток, заряжающий   конденсатор   (I =CdU/dt), обладает некоторыми особыми свойствами. В отличие от тока, протекающего через резистор, он пропорционален не напряжению, а скорости изменения напряжения (т.е. его производной по времени). Далее, мощность (U умноженное на I), которая связана с протекающим через конденсатор током, не обращается в тепло, а сохраняется в виде энергии внутреннего электрического поля в конденсаторе. При разряде конденсатора происходит извлечение энергии.

13. RC-цепи: изменения во времени напряжения и тока

Для анализа цепей переменного тока (или в общем случае схем, работающих с изменяющимися напряжениями и токами) можно использовать характеристики двух типов. Во-первых, можно рассматривать изменения напряжения U и тока I во времени, а во-вторых - изменение амплитуды при изменении частоты сигнала. И те, и другие характеристики имеют свои преимущества, и в каждом практическом случае приходится выбирать наиболее подходящие.

Каковы же свойства схем, в состав которых входят конденсаторы? Для того чтобы ответить на этот вопрос, рассмотрим простейшую RC-цепь (рис.25). Воспользуемся полученным ранее выражением для емкости:

C(dU,dt) = I = - U/R.

Это выражение представляет собой дифференциальное уравнение, решение которого имеет вид

Отсюда следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на рис.26.

Постоянная времени. Произведение RC называют постоянной времени цепи. Если R измерять в омах, а С в фарадах, то произведение RC будет измеряться в секундах. Для конденсатора емкостью 1 мкФ, подключенного к резистору сопротивлением 1 кОм постоянная времени составляет 1 мс, если конденсатор был предварительно заряжен и напряжение на нем составляет 1 В, то при подключении резистора в цепи появится ток, равный 1 мА.

На рис.27 показана несколько иная схема. В момент времени t = 0 схема подключается к батарее. Уравнение, описывающее работу такой схемы, выглядит следующим образом: I = C(dU/dt) =(Uвх-U)/R и имеет решение:

В дальнейшем мы будем многократно использовать эти результаты, не прибегая к математическим выкладкам. Постоянная величина А определяется из начальных условий (рис.28): U = 0 при t = 0, откуда А=-Uвх и

Установление равновесия. При условии t>>RC напряжение достигает значения Uвх. (Советуем запомнить хорошее практическое правило, называемое правилом пяти RC: за время, равное пяти постоянным времени, конденсатор заряжается или разряжается на 99%.) Если затем изменить входное напряжение Uвх (сделать его равным, например, нулю), то напряжение на конденсаторе U будет убывать, стремясь к новому значению по экспоненциальному закону . Например, если на вход подать прямоугольный сигнал Uвх, то сигнал на выходе U будет иметь форму, показанную на рис.29.

У вас, наверное, возник вопрос: каков закон изменения для произвольного Uвх(t). Для того чтобы ответить на него, нужно решить неоднородное дифференциальное уравнение. В результате получим

Согласно полученному выражению, RC-цепь усредняет входное напряжение с коэффициентом пропорциональности , где ∆τ = τ - t. На практике, однако, такой вопрос возникает редко. Чаше всего рассматриваются частотные характеристики и определяют, какие изменения претерпевает каждая частотная составляющая входного сигнала.

Упрощение с помощью эквивалентного преобразования Тевенина. Можно было бы приступить к анализу более сложных схем, пользуясь, как и раньше, методом решения дифференциальных уравнений. Однако чаше всего не стоит прибегать к решению дифференциальных уравнений. Большинство схем можно свести к RC-схеме, показанной на рис.30. Пользуясь эквивалентным преобразованием для делителя напряжения, образованного резисторами R1 и R2, можно определить U(t) для скачка входного напряжения Uвх.

Пример: схема задержки. Мы уже упоминали логические уровни-напряжения, определяющие работу цифровых схем. На рис.31 показано, как с помощью конденсаторов можно получить задержанный импульс. В виде треугольников изображены КМОП-буферные усилители. Они дают высокий уровень на выходе (более половины величины напряжения питания постоянного тока) и наоборот. Первый буферный усилитель воспроизводит входной сигнал и обеспечивает небольшое выходное сопротивление, предотвращая тем самым воздействие на источник сигнала RC-цепи.

Согласно характеристике RC-цепи, выходной сигнал для нее задерживается относительно входного, поэтому выходной буферный усилитель переключается на 10 мкс позже скачка напряжения на входе (напряжение на выходе RC -цепи достигает 50% своего максимального значения через 0,7 RC). На практике приходится принимать во внимание отклонение входного порога буфера от величины, равной половине напряжения питания, так как это отклонение изменяет задержку и ширину выходного импульса. Иногда подобную схему используют для того, чтобы задержать импульс на время, в течение которого может произойти какое-либо событие. При проектировании схем лучше не прибегать к подобным трюкам, но иногда они бывают полезны.

14. Дифференцирующие цепи

Рассмотрим схему, изображенную на рис.32. Напряжение на конденсаторе С равно UвхU, поэтому

I = Cd(Uвх-U)/dt=U/R.

Если резистор и конденсатор выбрать так, чтобы сопротивление R и емкость С были достаточно малыми и выполнялось условие dU/dt << dUвх/dt, то

C(dUвх/dt) = U/R или U(t) = RC[dUвх(t)/dt].

Таким образом, мы получили, что выходное напряжение пропорционально скорости изменения входного сигнала.

Для того чтобы выполнялось условие dU/dt << dUвх/dt, произведение RC должно быть небольшим, но при этом сопротивление R не должно быть слишком малым, чтобы не «нагружать» вход (при скачке напряжения на входе изменение напряжения на конденсаторе равно нулю и R представляет собой нагрузку со стороны входа схемы). Более точный критерий выбора для R и С мы получим, когда изучим частотные характеристики. Если на вход схемы подать прямоугольный сигнал, то сигнал на выходе будет иметь вид, представленный на рис.33.

Дифференцирующие цепи удобно использовать для выделения переднего и заднего фронтов импульсных сигналов, и в цифровых схемах можно иногда встретить цепи, подобные той, которая показана на рис.34. Дифференцирующая RC-цепь генерирует импульсы в виде коротких пиков в моменты переключения входного сигнала, а выходной буферный усилитель преобразует эти импульсы в короткие прямоугольные импульсы. В реальных схемах отрицательный пик бывает небольшим благодаря встроенному в буфер диоду (речь об этом элементе пойдет позднее).

Паразитная емкостная связь. Иногда схема неожиданно начинает проявлять дифференцирующие свойства, причем в ситуациях, где они совершенно нежелательны. При этом можно наблюдать сигналы, подобные показанным на рис.35. Первый сигнал (а точнее, импульсная помеха) может возникнуть при наличии емкостной связи между рассматриваемой линией и схемой, в которой присутствует прямоугольный сигнал; причиной появления подобной помехи может служить отсутствие оконечного резистора в линии. Если же резистор есть, то следует либо уменьшить сопротивление источника сигналов для линии, либо найти способ ослабления емкостной связи с источником сигналов прямоугольной формы. Сигнал второго типа можно наблюдать в цепи, по которой должен проходить сигнал прямоугольной формы, при наличии дефекта в контакте с этой цепью, например, в щупе осциллографа. Небольшая емкость, возникающая при плохом контакте, и входное сопротивление осциллографа образуют дифференцирующую цепь. Если вы обнаружили, что ваша схема «что-то» дифференцирует, то сказанное может помочь вам найти причину неисправности и устранить ее.

15. Интегрирующие цепи

Рассмотрим    схему,    изображенную    на рис.36.

Напряжение на резисторе R равно Uвх-U, следовательно, I=C(dU/dt) =(Uвх-U)/R. Если обеспечить выполнение условия U << Uвх за счет большого значения произведения RC, то получим C(dU/dt)= Uвх/R или

Мы получили, что схема интегрирует входной сигнал во времени! Рассмотрим, каким образом эта схема обеспечивает аппроксимацию интегрирования в случае входного сигнала прямоугольной формы: U(t) представляет собой знакомый уже нам график экспоненциальной зависимости, определяющей заряд конденсатора (рис.37). Первый участок экспоненты (интеграл от почти постоянной величины) - прямая с постоянным углом наклона; при увеличении постоянной времени RC используется все меньший участок экспоненты, тем самым обеспечивается лучшая аппроксимация идеального пилообразного сигнала.

Отметим, что условие U << Uвх равносильно тому, что ток пропорционален напряжению Uвх. Если бы в качестве входного сигнала выступал ток I(t), а не напряжение, то мы получили бы идеальный интегратор. Источником тока может служить резистор с большим сопротивлением и с большим падением напряжения на нем, и на практике часто пользуются этим приближением.

Интегрирующие цепи находят широкое применение в аналоговой технике. Их используют в управляющих системах, схемах с обратной связью, при аналого-цифровом преобразовании и генерации колебаний.

Генераторы пилообразного сигнала. Теперь вы без труда разберетесь в том, как работает генератор пилообразного сигнала. Эта схема хорошо зарекомендовала себя и нашла очень широкое применение: ее используют во время - задающих схемах, в генераторах синусоидальных и других типов колебаний, в схемах развертки осциллографов, в аналого-цифровых преобразователях. Схема использует постоянный ток для заряда конденсатора (рис.38). Из уравнения для тока, протекающего через конденсатор, I=C(dU/dt) получим U(t) = (I/C)t. Выходной сигнал изображен на рис.39. Линейное нарастание сигнала прекращается тогда, когда «иссякает» напряжение источника тока, т. е. достигается его предельное значение. Кривая для простой RC- цепи с резистором, подключенным к источнику напряжения, ведет себя аналогично случаю достижения предела источником тока.

На рис.39 эта вторая кривая показана для случая, когда R выбрано так, чтобы ток при нулевом выходном напряжении был равен току источника тока; при этом вторая кривая стремится к тому же пределу, что и ломаная. (В реальных источниках тока выходное напряжение ограничено напряжением используемых в них источников питания, так что такое поведение вполне правдоподобно.)

 

Если вы поняли, что такое конденсатор, то вы поймете и что такое индуктивность (рис.40). Сравним индуктивность и конденсатор между собой; в индуктивности скорость изменения тока зависит от приложенного напряжения, а в конденсаторе скорость изменения напряжения зависит от протекающего тока. Уравнение индуктивности имеет следующий вид:

U = L(dI/dt),

где L — индуктивность в генри. Напряжение, приложенное к индуктивности, вызывает нарастание протекающего через нее тока, причем изменение тока происходит по линейному закону (если пропустить ток через конденсатор, то это приведет к нарастанию напряжения на нем. причем изменение напряжения будет происходить по линейному закону); напряжение величиной 1 В приложенное к индуктивности 1 Гн приводит к нарастанию тока через индуктивность со скоростью 1 А в 1с. Ток,    протекающий    через    индуктивность, также как и ток, протекающий через конденсатор, не просто пропорционален напряжению. Более того, в отличие от резистора мощность, связанная с током через индуктивность (произведение U на I), не преобразуется в тепло, а сохраняется в виде энергии магнитного поля индуктивности. Эту энергию можно извлечь, если прервать ток через индуктивность.

Условно индуктивность изображают в виде нескольких витков провода - такую конструкцию имеет простейшая индуктивность. Другие, более совершенные конструкции включают сердечник, на который наматывается провод. Материалом для сердечника чаще всего служит железо (пластинки, прокатанные из сплавов железа или изготовленные методами порошковой металлургии) или феррит, представляющий собой хрупкий непроводящий магнитный материал черного цвета. Сердечник позволяет увеличить индуктивность катушки за счет магнитных свойств материала сердечника. Сердечник может быть изготовлен в виде бруска, тора или может иметь какую-нибудь более причудливую форму, например «горшка».

Индуктивности находят наибольшее применение в радиочастотных схемах, где они используются в качестве радиочастотных дросселей, и в резонансных схемах. Пара связанных индуктивностей образует такой интересный элемент, как трансформатор. О нем мы поговорим в следующем разделе. По сути дела индуктивность - это противоположность конденсатора.

17. Трансформаторы

Трансформатор - это устройство, состоящее из двух связанных катушек индуктивности (называемых первичной и вторичной обмотками). Напряжение, снимаемое со вторичной обмотки, иное по сравнению с напряжением переменного тока, поданным на первичную обмотку, причем коэффициент изменения (трансформации) напряжения прямо пропорционален отношению числа витков обмоток трансформатора, а коэффициент изменения тока -обратно пропорционален. Мощность сохраняется неизменной. На рис.41 показано условное обозначение трансформатора с пластинчатым сердечником (трансформаторы такого типа используются для преобразования напряжения переменного тока с частотой 60 Гц).

Трансформатор обладает весьма высоким коэффициентом полезного действия (мощность на его выходе почти равна мощности на входе); в связи с этим повышающий трансформатор обеспечивает рост напряжения при уменьшении тока. Если вторичная обмотка не нагружена, то в первичной протекает очень небольшой ток.

В электронных приборах трансформаторы выполняют две важные функции: во-первых, они преобразуют напряжение переменного тока сети к нужному, обычно более низкому значению, которое можно использовать в схеме, и во-вторых, они «изолируют» электронную схему от непосредственного контакта с силовой сетью, так как обмотки трансформатора электрически изолированы одна от другой. Выпускаемые промышленностью силовые трансформаторы (предназначенные для работы с напряжением силовых сетей равным 110, 127 или 220 В) обеспечивают разнообразные значения вторичных напряжений и токов: диапазон напряжений включает значения от 1 В до нескольких тысяч вольт, диапазон тока -от нескольких миллиампер до сотен ампер. Трансформаторы, используемые обычно в электронных приборах, обеспечивают диапазон вторичного напряжения от 10 до 50 В, диапазон тока - от 0,1 до 5 А.

Промышленность выпускает также трансформаторы, предназначенные для работы в диапазоне звуковых частот, иногда используют резонансные трансформаторы. Интерес представляют трансформаторы для линий передач. Для сердечников высокочастотных трансформаторов используют специальные материалы или прибегают к специальным конструкциям для того, чтобы уменьшить потери энергии в сердечнике; что же касается сердечников низкочастотных (т.е. силовых) трансформаторов, то их делают тяжелыми или крупногабаритными. Трансформаторы для высоких и низких частот, вообще говоря, не взаимозаменяемы.

RLC – цепи, фильтры.

Цепи этого класса подробно рассматриваются в курсе теоретических основ электротехники. По этой причине мы не будем уделять им значительного внимания. В последствии их применение будет рассмотрено в рамках изучения высокочастотных устройств.

ДИОДЫ И ДИОДНЫЕ СХЕМЫ 

25. Диоды

Элементы, которые мы рассматривали до сих пор, относятся к линейным. Это значит, что удвоение приложенного сигнала (скажем, напряжения) вызывает удвоение отклика (скажем, тока). Этим свойством обладают даже реактивные элементы, конденсаторы и индуктивности. Рассмотренные элементы являются также пассивными, т.е. они не имеют встроенного источника энергии. И, кроме того, все эти элементы имеют по два вывода.

Диод (рис.42) представляет собой пассивный нелинейный элемент с двумя выводами. Вольт - амперная характеристика диода показана на рис.43. (Придерживаясь принятого нами подхода, не будем объяснять физику явлений, определяющих функционирование этого элемента.)

На условном обозначении направление стрелки диода (так обозначают анод элемента) совпадает с направлением тока. Например, если через диод в направлении от анода к катоду протекает ток величиной 10 мА, то анод на 0,5 В более положителен, чем катод; эта разница напряжений называется «прямым напряжением диода». Обратный ток для диодов общего назначения измеряется в наноамперах (обратите внимание на разный масштаб измерений по оси абсцисс для прямого и обратного тока), и его, как правило, можно не принимать во внимание до тех пор, пока напряжение на диоде не достигнет значения напряжения пробоя (это напряжение называют также пиковым обратным напряжением). Чаще всего падение напряжения    на    диоде,    обусловленное прямым током через него, составляет от 0,5 до 0,8 В. Таким падением напряжения можно пренебречь, и тогда диод можно рассматривать как проводник, пропускающий ток только в одном направлении. К другим важнейшим характеристикам, отличающим существующие типы диодов друг от друга, относят: максимальный прямой ток, емкость, ток утечки и время восстановления обратного сопротивления. Прежде чем начинать рассматривать схемы, содержащие диоды, отметим два момента:

1) диод не обладает сопротивлением в указанном выше смысле (не подчиняется закону Ома);

2) схему, содержащую диоды, нельзя заменить эквивалентной.

26. Выпрямление

Выпрямитель преобразует переменный ток в постоянный: выпрямительные схемы являются самыми простыми и наиболее полезными в практическом отношении диодными схемами (иногда диоды даже называют выпрямителями). Простейшая выпрямительная схема показана на рис.44. Символ «Перем.» использован для обозначения источника переменного напряжения; в электронных схемах он обычно используется с трансформатором, питающимся от силовой линии переменного тока. Для синусоидального входного напряжения, значительно превышающего прямое напряжение диода (обычно в выпрямителях используют кремниевые диоды, для которых прямое напряжение составляет 0,6 В), выходное напряжение будет иметь вид, показанный на рис.45. Если вы вспомните, что диод - это проводник, пропускающий ток только в одном направлении, то нетрудно понять, как работает схема выпрямителя. Представленная схема называется одно - полупериодным выпрямителем, так как она использует только половину входного сигнала (половину периода).

На рис.46 представлена схема двух - полупериодного выпрямителя, а на рис.47 показан ее выходной сигнал. Из графика видно, что входной сигнал используется при выпрямлении полностью. На графике выходного напряжения наблюдаются интервалы с нулевым значением   напряжения,   они   обусловлены прямым напряжением диодов. В рассматриваемой схеме два диода всегда подключены последовательно к входу; об этом следует помнить при разработке низковольтных источников питания.

27. Фильтрация в источниках питания

Выпрямленные сигналы, полученные в предыдущем разделе, еще не могут быть использованы как сигналы постоянного тока. Дело в том, что их можно считать сигналами постоянного тока только в том отношении, что они не изменяют свою полярность. На самом деле в них присутствует большое количество «пульсаций» (периодических колебаний напряжения относительно постоянного значения), которые необходимо сгладить для того, чтобы получить настоящее напряжение постоянного тока. Для этого схему выпрямителя нужно дополнить фильтром низких частот (рис.48). Вообще говоря, последовательный резистор здесь не нужен, и его, как правило, не включают в схему (если же резистор присутствует, то он имеет очень маленькое сопротивление и служит для ограничения пикового тока выпрямителя). Дело в том, что диоды предотвращают протекание тока разряда конденсаторов, и последние служат скорее как накопители энергии, а не как элементы классического фильтра низких частот. Энергия, накопленная конденсатором, определяется выражением W= 1/2CU2. Если емкость С измеряется в фарадах, а напряжение U - в вольтах, то энергия W будет измеряться в джоулях (в ваттах в 1 с).

Конденсатор подбирают так, чтобы выполнялось условие RнC >> 1/f (где f -частота пульсаций, в нашем случае 120 Гц). При этом происходит ослабление пульсаций за счет того, что постоянная времени для разрядки конденсатора существенно превышает время между перезагрузками.

Определение напряжения пульсаций. Приблизительно определить напряжение пульсаций нетрудно, особенно если оно невелико по сравнению с напряжением постоянного тока (рис.49). Нагрузка вызывает разряд конденсатора, который происходит в промежутке между циклами (или половинами циклов для двухполупериодного выпрямления) выходного сигнала. Если предположить, что ток через нагрузку остается постоянным (это справедливо для небольших пульсаций), то ∆U = (I/C)∆t (напомним, что I=C(dU/dt)). Подставим значение 1/f (или 1/2f для двухполупериодного выпрямления) вместо ∆t (такая замена допустима, так как конденсатор начинает снова заряжаться меньше, чем через половину цикла). Получим

U= Iнагр/fC (однополупериодное выпрямление),

U= Iнагр/2fC (двухполупериодное выпрямление).

Если воспользоваться экспоненциальной функцией, определяющей изменение напряжения на конденсаторе при его разряде, то результат получим неправильным по следующим причинам:

1. Разряд конденсатора описывается экспоненциальной   зависимостью   только   в том случае, если нагрузка резистивна; в большинстве случаев это не так. Часто на выходе выпрямителя устанавливают стабилизатор напряжения, который обеспечивает       постоянство       выпрямленного напряжения - он выступает в роли нагрузки, через которую протекает постоянный ток.

2.  Для источников питания используют, как правило, конденсаторы с точностью 20% и более. При разработке схем следует учитывать разброс параметров компонентов  и для страховки производить расчет   для   наиболее   неблагоприятного сочетания их значений.

В таком случае, если считать, что в начальный момент разряд конденсаторов происходит по линейному закону, приближение будет весьма точным, особенно если пульсации невелики. Неточности приближения приводят лишь к некоторой перестраховке — они проявляются в завышении расчетного напряжения пульсаций по сравнению с его истинным значением.

28. Схемы выпрямителей для источников питания

Двухполупериодная  мостовая  схема.   На рис.50 показана схема источника питания постоянного тока с мостовым выпрямителем, который мы только что рассмотрели. Промышленность изготавливает мостовые схемы в виде функциональных модулей. Маленькие мостовые модули рассчитаны на предельный ток 1 А и напряжение пробоя от 100 до 600 В, а иногда до 1000 В. Для больших мостовых выпрямителей предельный ток равен 25 А и выше.

Двухлолупериодный однофазный выпрямитель. Схема двухполупериодного однофазного выпрямителя приведена на рис.51. Выходное напряжение здесь в 2 раза меньше, чем в схеме мостового выпрямителя. Схема двухполупериодного однофазного выпрямителя не является эффективной с точки зрения использования трансформатора, так как каждая половина вторичной обмотки используется только в одном полупериоде. В связи с этим ток в обмотке за этот интервал времени в 2 раза больше, чем в простой двухполупериодной схеме. Согласно закону Ома, температура нагрева обмотки пропорциональна произведению I2R, значит, за время в 2 раза меньшее нагрев будет в 4 раза больше или в среднем больше по сравнению с эквивалентной двухполупериодной схемой. Трансформатор для этой схемы следует выбирать так, чтобы его предельный ток был в 1,4 (в √2) раз больше, чем у трансформатора мостовой схемы, в противном случае такой выпрямитель будет более дорогим и более громоздким, чем мостовой.

Расщепление       напряжения       питания.

Широко распространена мостовая однофазная двухполупериодная схема выпрямителя, показанная на рис.53. Она позволяет рсщеплять напряжение питания (получать на выходе одинаковые напряжения положительной и отрицательной полярности). Эта схема эффективна, так как в каждом полупериоде входного сигнала используются обе половины вторичной обмотки.

Выпрямители с умножением напряжения.

Схема, показанная на рис.54, называется удвоителем напряжения. Для того чтобы понять, как работает эта схема, представьте, что она состоит из двух последовательно соединенных выпрямителей. Фактически эта схема является двухполупериодным выпрямителем, так как она работает в каждом полупериоде входного сигнала - частота пульсаций в 2 раза превышает частоту колебаний питающей сети (для сети с частотой 60 Гц, как в США, частота пульсаций составляет 120 Гц).

Разновидности этой схемы позволяют увеличивать напряжение в 3, 4 и более раз. На рис.55 показаны схемы выпрямителей, обеспечивающие увеличение напряжения в 2, 3 и 4 раза, в которых один конец обмотки трансформатора заземлен.

 

29. Стабилизаторы напряжения

Путем увеличения емкости конденсатора можно уменьшить пульсации напряжения до требуемого уровня. Такой способ борьбы с пульсациями имеет два недостатка:

1. Конденсаторы нужной емкости могут оказаться недопустимо громоздкими и дорогими.

2. Даже в том случае, когда пульсации уменьшены до пренебрежимо малого уровня, наблюдаются колебания выходного напряжения, обусловленные уже другими причинами, например, изменения входного напряжения сети  ведут к флуктуациям выходного напряжения постоянного тока. Кроме того, изменение выходного напряжения может быть вызвано изменением тока нагрузки, так как трансформатор, диод и другие элементы обладают конечным внутренним сопротивлением. Иначе говоря, для эквивалентной схемы источника питания постоянного тока справедливо соотношение R>0.

Более правильный подход к разработке источника питания состоит в том, чтобы с помощью конденсатора уменьшить пульсации до некоторого уровня (чтобы они составляли, например, 10% от напряжения постоянного тока), а затем, для устранения остатков пульсаций, использовать схему с обратной связью. Такая схема содержит управляемый резистор (транзистор), подключаемый последовательно к выходу схемы, за счет которого уровень выходного напряжения поддерживается постоянным (рис.56).

Подобные стабилизаторы напряжения используют почти повсеместно в качестве источников питания для электронных схем. В настоящее время промышленность выпускает стабилизаторы напряжения в виде законченных, готовых к использованию модулей. На основе стабилизатора напряжения можно построить удобный для работы источник питания, которому не страшны никакие опасности (короткие замыкания, перегрев и т.п.) и характеристики которого удовлетворяют самым высоким требованиям, предъявляемым к источнику напряжения (например, внутреннее сопротивление такого источника измеряется в миллиомах).

30. Примеры использования диодов

Выпрямление сигналов. Бывают такие случаи, помимо тех, что мы рассмотрели выше, когда сигнал должен иметь только одну полярность. Если входной сигнал не является синусоидальным, то говорить о его выпрямлении не принято, хотя процесс выпрямления применим и к нему. Например, требуется получить последовательность импульсов, совпадающих с моментами нарастания прямоугольного сигнала. Проще всего продифференцировать прямоугольный сигнал, а затем выпрямить его (рис.57).

Следует всегда иметь в виду, что прямое напряжение диода составляет приблизительно 0,6 В. На выходе нашей схемы, например, сигнал будет получен лишь в том случае, когда двойная амплитуда прямоугольного входного сигнала будет не меньше 0,6 В. Это условие накладывает определенные ограничения на разработку схемы, но известны приемы, с помощью которых их можно преодолеть. Например, можно воспользоваться диодом Шоттки, для которого прямое напряжение составляет около 0,25 В (можно также использовать так называемый обращенный диод с нулевым прямым напряжением, но его применение ограничено из-за того, что он имеет малое напряжение пробоя). Можно также воспользоваться схемой, показанной на рис.58. Прямое напряжение на диоде Д2 компенсируется за счет диода Д1, обеспечивающего смещение величиной 0,6 В. Это смещение определяет порог проводимости для Д2. Формирование смещения с помощью диода Д1 (а не с помощью, например, делителя напряжения) имеет следующие преимущества: нет необходимости проводить регулировку уровня смещения, так как схема обеспечивает почти идеальную компенсацию; изменение прямого напряжения диодов (связанное, например, с изменением температуры) компенсируется и не сказывается на работе схемы. В дальнейшем мы еще не раз встретим компенсации изменений прямого напряжения с помощью согласованной пары диодов, транзисторов и полевых транзисторов: этот прием очень эффективен и прост в исполнении.

Диодные вентили. Еще одна область применения диодов основана на их способности пропускать большее из двух напряжений, не оказывая влияния на меньшее. Схемы, в которых используется это свойство, объединены в семейство логических схем. Рассмотрим схему с резервной батареей питания - она используется в устройствах, которые должны работать непрерывно даже при отключениях питания (например, точные электронные часы). Схема, показанная на рис.59, включает как раз такую батарею. В отсутствие сбоев питания батарея не работает, при возникновении сбоя питание на схему начинает поступать от батареи, при этом перерыва в подаче питания не происходит.

Диодные ограничители. В тех случаях, когда необходимо ограничить диапазон изменения сигнала, например напряжения, можно воспользоваться схемой, показанной на рис.60. Благодаря диоду выходное напряжение не может превышать значения +5,6 В, при этом наличие диода никак не сказывается на меньших значениях напряжения (в том числе и на отрицательных); единственное условие состоит в том, что отрицательное входное напряжение не должно достигать значения напряжения пробоя. Во всех схемах семейства цифровых логических КМОП - схем используются входные диодные ограничители. Они предохраняют эти чувствительные схемы от разрушения под действием разрядов статического электричества.

Эталонное опорное напряжение можно подавать на ограничитель от делителя напряжения (рис.61). Если делитель напряжения заменить его эквивалентной схемой, то исходная схема преобразуется к виду, представленному на рис.62. Анализируя преобразованную схему, можно заключить, что импеданс со стороны выхода делителя напряжения (Rдел) должен быть мал по сравнению с сопротивлением R. Когда диод открыт (входное напряжение превышает напряжения ограничения), выходное напряжение совпадает с напряжением, снимаемым с делителя, при этом нижнее плечо делителя представлено эквивалентным сопротивлением (рис.63). Следовательно, для указанных параметров схемы выходное напряжение для треугольного входного сигнала будет иметь вид, показанный на рис.64. Затруднение здесь возникает в связи с тем, что делитель напряжения не обеспечивает жесткофиксированного значения эталонного напряжения. Хорошо зафиксированный опорный эталонный сигнал не «плывет», а это значит, что источник такого напряжения обладает небольшим импедансом (имеется в виду эквивалентный импеданс).

На рис.61 показан простой способ, с помощью которого можно «зафиксировать» схему ограничителя по крайней мере для высокочастотных сигналов - для этого к резистору 1 кОм нужно подключить шунтирующий конденсатор. Например, конденсатор емкостью 15 мкФ с одним заземленным выводом на частотах выше 1 кГц уменьшает импеданс со стороны входа делителя до значения ниже 10 Ом. (Аналогично можно подключить конденсатор к Д1, как показано на рис.58). Само собой разумеется, эффективность этого приема тем ниже, чем ниже частота, а для постоянного тока этот прием просто бесполезен.

На практике малое значение импеданса эталонного источника обеспечивается за счет использования транзистора или операционного усилителя. Такой способ, конечно, лучше, чем использование резисторов с очень малым сопротивлением, так как он не приводит к потреблению больших токов и обеспечивает значения импеданса порядка нескольких ом и ниже. Следует отметить, что известны и другие схемы ограничения, в которых используются операционные усилители.

Интересным примером является использование ограничителя для восстановления сигнала по постоянному току в случае емкостной связи по переменному току. Смысл сказанного поясняет рис.65. Подобные приемы необходимо использовать в схемах, входы которых работают аналогично диодам (например, это могут быть транзисторы с заземленным эмиттером), в противном случае при наличии емкостной связи сигнал просто пропадает.

Двусторонний ограничитель. Еще один ограничитель показан на рис.66. Эта схема ограничивает «размах» выходного сигнала и делает его равным падению напряжения на диоде, т.е. приблизительно 0,6 В. Может показаться, что это очень малое значение, но если следующим каскадом схемы является усилитель с большим коэффициентом усиления по напряжению, то входной сигнал для него всегда должен быть немногим больше чем 0 В, иначе усилитель попадет в режим «насыщения» (например, если коэффициент усиления каскада равен 1000, а питающее напряжение составляет + 15 В, то входной сигнал не должен превышать диапазон ±15 мВ). Описанная схема часто используется в качестве защиты на входе усилителя с большим коэффициентом усиления.

Диоды как нелинейные элементы. Мы получим достаточно хорошее приближение, если будем считать, что ток через диод пропорционален экспоненциальной функции от напряжения на нем при данной температуре. В связи с этим диод можно использовать для получения выходного напряжения, пропорционального логарифму тока (рис.67). Поскольку напряжение U лишь незначительно отклоняется от значения 0,6 В (под воздействием колебаний входного тока), входной ток можно задавать с помощью резистора при условии, что входное напряжение значительно превышает падение напряжения на диоде (рис.68).

              

На практике иногда желательно, чтобы в выходном напряжении присутствовало смещение 0,6 В, обусловленное падением напряжения на диоде. Кроме того, желательно, чтобы схема не реагировала на изменения температуры. Эти требования позволяет удовлетворить метод диодной компенсации (рис.69). Резистор R1 открывает диод Д2 и создает в точке А напряжение, равное — 0,6 В. Потенциал точки В близок к потенциалу земли (при этом ток Iвх строго пропорционален напряжению Uвх). Если два одинаковых диода находятся в одинаковых температурных условиях, то напряжения на них полностью компенсируют друг друга, за исключением, конечно, той разницы, которая обусловлена входным током, протекающим через диод Д1, и которая определяет выходное напряжение. Для этой схемы резистор R1 следует выбирать таким, чтобы ток через диод Д2 был значительно больше максимального входного тока. При этом условии диод Д2 будет открыт.

В главе, посвященной операционным усилителям, мы рассмотрим более совершенные схемы логарифмических преобразователей и более точные методы температурной компенсации. Они позволяют обеспечивать высокую точность преобразования - ошибка достигает всего нескольких процентов для шести и более декад изменения входного тока. Но для того, чтобы заняться такими схемами, необходимо сначала изучить характеристики диодов, транзисторов и операционных усилителей. Настоящий раздел служит лишь предисловием к такому изучению.

31. Индуктивные нагрузки и диодная защита

Что произойдет, если разомкнуть переключатель, управляющий током через индуктивность? Индуктивность, как известно, характеризуется следующим свойством: U=L(dl/dt), а из этого следует, что ток нельзя выключить моментально, так как при этом на индуктивности появилось бы бесконечное напряжение. На самом деле напряжение на индуктивности резко возрастает и продолжает увеличиваться до тех пор, пока не появится ток. Электронные устройства, которые управляют индуктивными нагрузками, могут не выдержать такого роста напряжения, особенно это относится к компонентам, в которых при некоторых значениях напряжения наступает «пробой». Рассмотрим схему, представленную на рис.70. В исходном состоянии переключатель замкнут и через индуктивность (в качестве которой может выступать, например, обмотка реле) протекает ток. Когда переключатель разомкнут, индуктивность «стремится» обеспечить ток между точками А и В, протекающий в том же направлении, что и при замкнутом переключателе. Это значит, что потенциал точки В становится более положительным, чем потенциал точки А. В нашем случае разница потенциалов может достичь 1000 В, прежде чем в переключателе возникнет электрическая дуга, которая и замкнет цепь. При этом укорачивается срок службы переключателя и возникают импульсные наводки, которые могут оказывать влияние на работу близлежащих схем. Если представить себе, что в качестве переключателя используется транзистор, то срок службы такого переключателя не укорачивается, а просто становится равным нулю!

Чтобы избежать подобных неприятностей лучше всего подключить к индуктивности диод, как показано на рис.71. Когда переключатель замкнут, диод смещен в обратном направлении (за счет падения напряжения постоянного тока на обмотке катушки индуктивности). При размыкании переключателя диод открывается и потенциал контакта переключателя становится выше потенциала положительного питающего напряжения на величину падения напряжения на диоде. Диод нужно подобрать так, чтобы он выдерживал начальный ток, равный току, протекающему в установившемся режиме через индуктивность.

Единственным недостатком описанной схемы является то, что она затягивает затухание тока, протекающего через катушку, так как скорость изменения этого тока пропорциональна напряжению на индуктивности. В тех случаях, когда ток должен затухать быстро (например, быстродействующие контактные печатающие устройства, быстродействующие реле и т.д.), лучший результат можно получить, если к катушке индуктивности подключить резистор, подобрав его так, чтобы величина Uн+IR не превышала максимального допустимого напряжения на переключателе. (Самое быстрое затухание для данного максимального напряжения можно получить, если подключить к индуктивности зенеровский диод, который обеспечивает затухание по линейному, а не по экспоненциальному закону.)

Диодную защиту нельзя использовать для схем переменного тока, содержащих индуктивности (трансформаторы, реле переменного тока), так как диод будет открыт на тех полупериодах сигнала, когда переключатель замкнут. В подобных случаях рекомендуется использовать так называемую RC-демпфирующую цепочку (рис.72). Приведенные на схеме значения R и С являются типовыми для небольших индуктивных нагрузок, подключаемых к силовым линиям переменного тока. Демпфер такого типа следует предусматривать во всех приборах, работающих от напряжений силовых линий переменного тока, так как трансформатор представляет собой индуктивную нагрузку.   Для защиты можно также использовать такой элемент, как металлоксидный варистор. Он представляет собой недорогой элемент, похожий по внешнему виду на керамический конденсатор, а по электрическим характеристикам - на двунаправленный зенеровский диод. Его можно использовать в диапазоне напряжений от 10 до 1000 В для значений токов, достигающих тысяч ампер. Подключение варистора к внешним выводам схемы позволяет не только предотвратить индуктивные наводки на близлежащие приборы, но также погасить большие всплески сигнала, возникающие иногда в силовой линии и представляющие серьезную угрозу для оборудования.

2.01. Первая модель транзистора: усилитель тока

Итак, начнем. Транзистор - это электронный прибор, имеющий три вывода (рис.73).

Различают транзисторы п-р-п- и p-n-p-типa. Транзисторы n-р-n-типа подчиняются следующим правилам (для транзисторов p-n-p-типа правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):

1. Коллектор имеет более положительный потенциал, чем эмиттер.

2. Цепи база-эмиттер и база-коллектор работают как диоды (рис.74). Обычно диод база-эмиттер открыт, а диод база-коллектор смещен в обратном направлении, т.е. приложенное напряжение препятствует протеканию тока через него.

3. Каждый транзистор характеризуется максимальными значениями Iк, Iб и Uкэ. За превышение этих значений приходится расплачиваться новым транзистором.

Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности (Iкэ Uкэ), температуры, Uбэ и др.

4. Если правила 1-3 соблюдены, то ток Iк прямо пропорционален току Iб и можно записать следующее соотношение:

Iк=h21э*Iб=Iб

где h21э-коэффициент усиления по току (обозначаемый также ), обычно составляет около 100. Токи Iк и Iэ втекают в эмиттер. Замечание: коллекторный ток не связан с прямой проводимостью диода база-коллектор; этот диод смещен в обратном направлении. Будем просто считать, что «транзистор так работает».

Правило 4 определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.

Запомните:  параметр  h21э нельзя назвать «удобным»; для различных транзисторов одного и того же типа его величина может изменяться от 50 до 250. Он зависит также от тока коллектора, напряжения между коллектором и эмиттером, и температуры. Схему можно считать плохой, если на ее характеристики влияет величина параметра h^u-

Рассмотрим правило 2. Из него следует, что напряжение между базой и эмиттером нельзя увеличивать неограниченно, так как если потенциал базы будет превышать потенциал эмиттера более чем на 0.6-0,8 В (прямое напряжение диода), то возникнет очень большой ток. Следовательно,  в работающем транзисторе напряжения на базе и эмиттере связаны следующим соотношением: Uб = Uэ+ 0,6 В (Uб == Uэ + Uбэ). Еще раз уточним, что полярности напряжений указаны для транзисторов п-р-п-типа, их следует изменить на противоположные для транзисторов р-п-р-типа.

Обращаем ваше внимание на то, что, как уже отмечалось, ток коллектора не связан с проводимостью диода. Дело в том, что обычно к диоду коллектор-база приложено обратное напряжение. Более того, ток коллектора очень мало зависит от напряжения на коллекторе (этот диод подобен небольшому источнику тока), в то время как прямой ток, а следовательно, и проводимость диода резко увеличиваются при увеличении приложенного напряжения.

2.03. Эмиттерный повторитель

На рис.75 показан эмиттерный повторитель. Он назван так потому, что выходной сигнал снимается с эмиттера, напряжение на котором равно напряжению на входе (на базе) минус падение напряжения на диоде  (на  переходе  база-эмиттер): Uэ=Uб  0,6 В.

Выходной сигнал по форме повторяет входной, но уровень его напряжения на 0,6-0,7 В ниже. Для приведенной схемы входное напряжение Uвх должно составлять по крайней мере 0,6 В, иначе выходное напряжение будет равно потенциалу земли. Если к эмиттерному резистору подключить источник отрицательного напряжения, то входной сигнал может быть отрицательным. Обратите внимание, что в эмиттерном повторителе отсутствует резистор в коллекторной цепи.

На первый взгляд эта схема может показаться бесполезной, но дело в том, что ее входной импеданс значительно больше, чем выходной. Из этого следует, что источник входного сигнала будет отдавать меньшую мощность, если нагрузку подключить к нему не непосредственно, а через эмиттерный повторитель. Поэтому обладающий внутренним импедансом источник (имеется в виду его эквивалентная схема) может через повторитель работать на нагрузку, которая обладает сравнимым или даже более низким импедансом, без потери амплитуды сигнала (эта потеря неизбежна при прямом включении из-за эффекта делителя напряжения). Иными словами, эмиттерный повторитель обеспечивает усиление по току, хотя и не дает усиления по напряжению. Он также обеспечивает усиление по мощности. Как видите, усиление по напряжению - это еще не все!

Импеданс   источника   и   нагрузки. Последнее замечание очень важно, поэтому задержим на нем свое внимание, прежде чем приступить к вычислениям, связанным со свойствами эмиттерных повторителей. При анализе электронных схем всегда стремятся связать выходную величину с какой-либо входной, как например на рис.76.

В качестве источника сигнала может выступать выход усилительного каскада (с эквивалентным последовательным импедансом Zвых), к которому подключен еще один каскад или нагрузка (обладающая входным импедансом Zвх). Вообще говоря, нагрузочный эффект следующего каскада проявляется в ослаблении сигнала, о чем шла речь ранее. В связи с этим обычно стремятся к тому, чтобы выполнялось условие Zвых << Zвх (практическое правило рекомендует использовать коэффициент 10, что на самом деле весьма удобно).

В некоторых случаях вполне можно пренебречь этим общим требованием для обеспечения стабильности источника по отношению к нагрузке. В частности, если нагрузка подключена всегда (например, входит в состав схемы) и если она представляет собой известную и постоянную величину Zвх, то нет ничего опасного в том, что она «нагружает» источник. Тем не менее, хуже не будет, если уровень сигнала не изменяется при подключении нагрузки. Кроме того, если Zвх изменяется при изменении уровня сигнала, то стабильный источник (Zвых << Zвх) обеспечивает линейность, а делитель напряжения дает искажение линейной зависимости.

Наконец, в двух случаях условие Zвых << Zbx соблюдать просто нельзя:

в радиочастотных схемах импедансы обычно выравнивают (Zвых = Zвх) по причине, которую мы объясним далее. Второе исключение относится к случаю, когда передаваемым сигналом является не напряжение, а ток. В этом случае ситуация меняется на противоположную, и нужно стремиться к выполнению условия Zвх << Zвых (для источника тока Zвых =∞).

Входной импеланс и импеданс эмиттерного повторителя. Итак, эмиттерный повторитель  обладает  способностью согласовывать импедансы источников сигналов и нагрузок. В этом и состоит его назначение.

Давайте подсчитаем входной и выходной импеданс эмиттерного повторителя. Предположим, что в приведенной схеме в качестве нагрузки выступает резистор R (на практике иногда так и бывает, в других случаях нагрузку подключают параллельно резистору R, но при параллельном соединении преобладает сопротивление R). Пусть напряжение на базе изменилось на величину Uб; соответствующее напряжение на эмиттере составит Uэ=Uб. Определим изменение тока эмиттера:

Uэ=Uб/R, равное Iб=[1/(h21э+1)]Iэ=Uб/R(h21э+1) (c учётом того, что  Iэ=Iк+Iб). Входное сопротивление схемы равно Uб/ Iб, следовательно

rвх=( h21э+1)R.

Коэффициент (h21э) обычно имеет значение около 100, поэтому подключение нагрузки с небольшим импедансом приводит к тому, что импеданс со стороны базы становится очень большим: с такой нагрузкой схеме легко работать.

В выполненном только что преобразовании, как и в гл. 1, мы использовали для обозначения некоторых величин строчные буквы, например h21э тем самым мы указали, что имеем дело с приращениями (малыми сигналами). Чаще всего нас интересует изменение напряжения (или тока) в схеме, а не постоянные значения (или значения по постоянному току) этих величин. Очень часто эти изменения малых сигналов и представляют собой реальный сигнал, например в усилителе звуковых частот, который имеет устойчивое «смещение» по постоянному току (см. разд. 2.05). Различие между коэффициентом усиления по постоянному току (h21э) и коэффициентом усиления по току для малого сигнала h21э не всегда очевидно, и для того, и для другого случая используют понятие коэффициента усиления . Если учесть, что h21э = h21э (за исключением очень высоких частот) и в большинстве случаев интерес представляет не точное, а приблизительное значение этого коэффициента, то использование коэффициента вполне допустимо.

В полученном соотношении фигурируют активные сопротивления, однако его можно обобщить и распространить на комплексные импедансы, если переменные Uб и Iб и др. заменить их комплексными представлениями. В результате получим правило преобразования импедансов для эмиттерного повторителя.

Zвх = (h21э +1)Zнагр

Проделав аналогичные преобгазования, найдем выходной импеданс эмиттерного повторителя Zвых (импеданс со стороны эмиттера) при использовании источника сигнала с внутренним импедансом Z ист:

Z вых = Z ист /(h21э - 1).

Строго говоря, в выходной импеданс схемы надо включить и сопротивление параллельного резистора R, но Zвых (импеданс со стороны эмиттера) играет основную роль.

Благодаря таким полезным свойствам эмиттерные повторители находят широкое практическое применение, например при создании внутри схем (или на их выходе) источников сигналов с низким импедансом, при получении стабильных эталонных напряжений на основе эталонных источников с высоким импедансом (сформированных, скажем, с помощью делителей напряжения) и для изоляции источников сигналов от влияния последующих каскадов.

Некоторые замечания по поводу эмиттер-ных повторителей. 1. Отметим (разд. 2.01, правило 4), что транзистор п-р-п -типа в эмиттерном повторителе может только отдавать ток. Например, для схемы, показанной на рис.77, выходное напряжение в положительной полуплоскости изменяется в пределах напряжения насыщения транзистора Uкк (что составляет +9,9 В), в отрицательной полуплоскости оно ограничено значением — 5 В. Это связано с тем, что при увеличении отрицательного напряжения на входе транзистор в определенный момент просто выключается, напряжение на входе составляет при этом —4,4 В, а на выходе —5В. Дальнейшее увеличение отрицательного напряжения на входе приводит лишь к обратному смещению перехода база-эмиттер, но на выходе это никак не проявляется. Выходной сигнал для входного синусоидального напряжения с амплитудой 10 В показан на рис.78

Можно также рассматривать поведение эмиттерного повторителя, исходя из того, что он обладает небольшим выходным импедансом для малого сигнала (динамический импеданс). Его выходной импеданс для большого сигнала может быть значительно больше (равен Rэ). Изменение импеданса от первого значения ко второму происходит в тот момент, когда транзистор выходит из активного режима (в нашем примере при напряжении на выходе —5 В). Иначе говоря, небольшой выходной импеданс для малого сигнала не означает еще, что схема может создавать большой сигнал на низкоомной нагрузке. Если схема имеет небольшой выходной импеданс для малого сигнала, то из этого не следует, что она обладает способностью передавать в нагрузку большой ток.

Для того чтобы преодолеть ограничение, присущее схеме эмиттерного повторителя, можно, например, в эмиттерной цепи использовать резистор с меньшим сопротивлением (тогда на резисторе и транзисторе будет рассеиваться большая мощность), или использовать двухтактную схему, в которой два транзистора (п-р-п-типа и р-п-р-гипа) взаимно дополняют друг друга. Проблемы такого рода возникают также в тех случаях, когда нагрузка эмиттерного повторителя имеет внутри собственный источник напряжения или тока. Примером такой схемы служит стабилизированный источник питания (на выходе которого стоит обычно эмиттерный повторитель), работающий на схему, содержащую собственный источник питания.

2. Не забывайте, что напряжение пробоя перехода база-эмиттер для кремниевых транзисторов невелико и часто составляет всего 6 В. Входные сигналы, имеющие достаточно большую амплитуду для того, чтобы вывести транзистор из состояния проводимости, могут вызвать пробой перехода (и последующее уменьшение значения коэффициента h21э). Для предохранения от пробоя можно использовать диод (рис.79).

3. Коэффициент усиления по напряжению для эмиттерного повторителя имеет значение чуть меньше 1.0, так как падение напряжения на переходе база-эмиттер фактически не является постоянным, а немного зависит от коллекторного тока. Далее в этой главе мы вернемся к этому вопросу, когда будем рассматривать Уравнение Эберса-Молла.

2.04. Использование эмиттерных повторителей в качестве стабилизаторов напряжения

Простейшим стабилизатором напряжения служит обычный зенеровский диод-стабилитрон (рис.80). Через него должен протекать некоторый ток, поэтому нужно обеспечить выполнение следующего условия:

(Uвх - Uвых)/R > Iвых(макс).

Так как напряжение Uвх не стабилизировано, то в формулу нужно поставить наименьшее возможное значение Uвх. Это пример того, как следует проектировать схему для жестких условий работы. На практике учитывают также допуски на параметры компонентов, предельные значения напряжения в сети и т. п., стремясь предусмотреть наихудшее возможное сочетание всех значений.

На стабилитроне рассеивается мощность:

Pстаб = [(Uвх - Uвых)/R Iвых]Uвых,.

Для того чтобы предусмотреть работу в жестких условиях, при расчете Рстаб также следует использовать значения Uвх (макс.), R(мин) и Iвых(мин).

Стабилизированный источник с зенеровским диодом, как правило, используют в некритичных схемах или в схемах, где потребляемый ток невелик. Ограничения такой схемы проявляются в следующем:

1. Напряжение Uвых нельзя отрегулировать или установить на заданное значение.

2. Стабилитроны имеют конечное динамическое сопротивление, а в связи с этим они не всегда достаточно сильно сглаживают пульсации входного напряжения и влияние изменения нагрузки.

3. При широком диапазоне изменения токов нагрузки приходится выбирать стабилитрон с большой мощностью рассеяния, так как при малом токе нагрузки он должен рассеять на себе значительную мощность, равную максимальной мощности в нагрузке.

На рис.81 представлена улучшенная схема, в которой зенеровский диод отделен от нагрузки эмиттерным повторителем. В такой схеме дела обстоят лучше. Ток стабилитрона теперь относительно независим от тока нагрузки, так как по цепи базы транзистора протекает небольшой ток и мощность, рассеиваемая на стабилитроне, значительно меньше (уменьшение в h21э раз). Резистор Rк можно добавить в схему для того, чтобы он предохранил транзистор от выхода из строя при кратковременном коротком замыкании выхода за счет ограничения тока, и, хотя эмиттерный повторитель нормально работает и без этого резистора, его присутствие в схеме вполне обоснованно. Резистор Rк следует выбирать так, чтобы при максимальном токе нагрузки падение напряжения на нем было меньше, чем на резисторе R.

В ряде вариантов рассмотренной схемы предусматривают меры для снижения пульсации тока в стабилитроне (протекающего через резистор R). В частности, может быть использован источник тока для питания стабилитрона. Этот случай мы рассмотрим в разд. 2.06. Другой метод основан на использовании в цепи питания стабилитрона фильтра низких частот (рис.82). Резистор R выбирают так, чтобы обеспечить необходимый ток в стабилитроне. Конденсатор С должен иметь емкость, достаточно большую для того, чтобы выполнялось условие RC >> 1/f. (В одном из вариантов этой схемы верхний резистор заменен диодом).

 

В дальнейшем вы познакомитесь с более совершенными стабилизаторами, в которых выходное напряжение можно легко и плавно настраивать благодаря обратной связи. Вместе с тем они представляют собой гораздо лучшие источники напряжения, выходные импедансы которых измеряются в миллиомах, температурные коэффициенты-в миллионных долях на °С и т.д.

2.05. Смещение в эмиттерном повторителе

Если на эмиттерный повторитель должен поступать сигнал с предшествующего каскада схемы, то лучше всего подключить его непосредственно к выходу предыдущего каскада, как показано на рис.83. Так как сигнал на коллекторе транзистора Т1 изменяется в пределах диапазона, ограниченного значениями напряжения источников питания, то потенциал базы Т2 всегда заключен между напряжением Uкк и потенциалом земли, а следовательно, Т2 находится в активной области (не насыщен и не в отсечке). При этом переход база-эмиттер открыт, а потенциал коллектора, по крайней мере на несколько десятых долей вольта больше, чем потенциал эмиттера. В некоторых случаях вход эмиттерного повторителя и напряжение питания неудачно соотносятся друг с другом, и тогда может возникнуть необходимость в емкостной связи (или связи по переменному току) с внешним источником сигнала (например, это относится к сигнальному входу высококачественного усилителя низкой звуковой частоты). В этом случае среднее напряжение сигнала равно нулю, и непосредственная связь с эмиттерным повторителем приведет к тому, что сигнал на выходе будет изменяться относительно входа, как показано на рис.84. 

В эмиттерном повторителе (а фактически в любом транзисторном усилителе) необходимо создать смешение для того, чтобы коллекторный ток протекал в течение полного периода сигнала. Проще всего воспользоваться для этого делителем напряжения (рис.85).

Резисторы R1 и R2 выбраны так, что в отсутствие входного сигнала потенциал базы равен половине разности между напряжением источника Uкк и потенциалом земли, т. е. сопротивления R1 и R2 равны. Процесс выбора рабочих напряжений в схеме в отсутствие поданных на ее вход сигналов называется установкой рабочей точки или точки покоя. Для этой схемы, как и в большинстве случаев, точку покоя устанавливают так, чтобы на выходе формировался максимальный симметричный сигнал (без ограничений или срезов). Какими должны быть при этом сопротивления резисторов R1 и R2? Применяя общий подход, допустим, что импеданс источника смещения по постоянному току (импеданс со стороны выхода делителя) мал по сравнению с импедансом нагрузки (импеданс по постоянному току со стороны базы повторителя). Тогда R1||R2<<h21эRэ

Из этого соотношения следует, что ток, протекающий через делитель напряжения, должен быть больше, чем ток, протекающий по цепи базы.

Пример разработки схемы эмиттерного повторителя. В качестве примера разработаем схему эмиттерного повторителя для сигналов звуковой частоты (от 20 Гц до 20 кГц). Напряжение Uкк составляет +15 В, ток покоя равен 1 мА.

Шаг 1. Выбор напряжения Uэ. Для получения симметричного сигнала без срезов необходимо, чтобы выполнялось условие Uэ = 0.5 Uкк, или + 7,5 В.

Шаг  2. Выбор  резистора  Rэ.  Ток покоя должен составлять 1 мА, поэтому Rэ = 7,5 кОм.

Шаг 3. Выбор резисторов R1 и R2. Напряжение Uб - это сумма Uэ + 0,6 В, или 8,1 В. Из этого следует, что сопротивления резисторов R1 и R2 относятся друг к другу как 1:1,17. Учитывая известный уже нам критерий выбора нагрузки, мы должны подобрать резисторы R1 и R2 так, чтобы сопротивление их параллельного соединения составляло приблизительно 75 кОм или меньше (0,1 от произведения 7,5 кОм на h21э). Выберем следующие стандартные значения сопротивлений: R1 == 130 кОм,  R2= 150 кОм.

 Шаг 4. Выбор конденсатора С1. Конденсатор C1 и сопротивление нагрузки источника образуют фильтр высоких частот. Сопротивление нагрузки источника есть параллельное соединение входного сопротивления транзистора со стороны базы и сопротивления делителя напряжения базы. Предположим, что нагрузка схемы велика по сравнению с эмиттерным резистором, тогда входное сопротивление транзистора со стороны базы равно h21эRэ, т.е. составляет около 750 кОм. Эквивалентное сопротивление делителя равно 70 кОм. Тогда нагрузка для конденсатора составляет 63 кОм и емкость конденсатора должна быть равна по крайней мере 0,15 мкФ. В этом случае точке — 3 дБ будет соответствовать частота, меньшая чем 20 Гц.

Шаг 5. Выбор конденсатора С2. Конденсатор С2 и неизвестный импеданс нагрузки образуют фильтр высоких частот. Мы не ошибемся, если предположим, что импеданс нагрузки не будет меньше Rэ. Тогда для того, чтобы точке — 3 дБ соответствовало значение частоты, меньшее чем 20 Гц, емкость конденсатора С2 должна быть равна по крайней мере 1.0 мкФ. Так как мы получили двухкаскадный фильтр высоких частот, то для предотвращения снижения амплитуды сигнала на самой низкой из интересующих нас частот емкости следует взять немного побольше. Вполне подойдут следующие значения: С1 = 0,5 и С2 = 3,3 мкФ.

Эмиттерные повторители с расщепленными источниками. В связи с тем, что сигналы часто находятся «возле земли», удобно использовать симметричное питание повторителей-с положительным и отрицательным напряжением. В такой схеме легче обеспечить смещение, и для нее не нужны развязывающие конденсаторы (рис.86).

Замечание: в схеме обязательно должна быть предусмотрена цепь постоянного тока для тока базы, даже если этот ток течет просто «на землю». В схеме на рис.86 эту роль играет источник сигнала, соединенный с землей по постоянному току. Если же это не так (например, имеется емкостная связь с источником), то следует предусмотреть связь базы с землей через резистор (рис.87). Как и прежде, сопротивление Rб должно составлять приблизительно 0,1 от произведения h21эRэ.

2.06. Транзисторный источник тока

Хотя источники тока не столь известны, они не менее полезны и важны, чем источники напряжения. Источники тока представляют собой прекрасное средство для обеспечения смещения транзисторов, и кроме того, незаменимы в качестве активной нагрузки для усилительных каскадов с большим коэффициентом усиления и в качестве источников питания эмиттеров для дифференциальных усилителей. Источники тока необходимы для работы таких устройств, как интеграторы, генераторы пилообразного напряжения. В схемах усилителей и стабилизаторов они обеспечивают широкий диапазон напряжений. И наконец, источники постоянного тока требуются в некоторых областях, не имеющих прямого отношения к электронике, например в электрохимии, электрофорезе.

Подключение резистора к источнику напряжения. Схема простейшего источника тока показана на рис.88. При условии что Rн >> R (иными словами, Uн >> U), ток сохраняет почти постоянное значение и равен приблизительно I = U/R. Если нагрузкой является конденсатор, то, при условии что Uкон >> U, он заряжается с почти постоянной скоростью, определяемой начальным участком экспоненты, характерной для данной RC-цепи.

Простейшему резистивному источнику тока присуши существенные недостатки. Для того чтобы получить хорошее приближение к источнику тока, следует использовать большие напряжения, а при этом на резисторе рассеивается большая мощность. Кроме того, током этого источника трудно управлять в широком диапазоне с помощью напряжения, формируемого где-либо в другом узле схемы.

Транзисторный источник тока. Очень хороший источник тока можно построить на основе транзистора (рис.89). Работает он следующим образом: напряжение на   базе   Uб > 0,6 В   поддерживает эмиттерный переход в открытом состоянии: Uэ = Uб — 0,6 В. В связи с этим Iэ = Uэ/Rэ = (Uб - 0,6 B)/Rэ. Так как для больших значений коэффициента h21э*Iэ=Iк, то Iк = (Uб - 0.6 В)/Rэ независимо от напряжения Uк до тех пор, пока транзистор не перейдет в режим насыщения (Uк > Uэ + 0.2 В).

Смещение в источнике тока. Напряжение на базе можно сформировать несколькими способами. Хороший результат дает использование делителя напряжения, если он обеспечивает достаточно стабильное напряжение. Как и в предыдущих случаях, сопротивление делителя должно быть значительно меньше сопротивления схемы со стороны базы по постоянному току h21эRэ. Можно воспользоваться также зенеровским диодом и использовать для смещения источник питания Uкк, а можно взять несколько диодов, смещенных в прямом направлении и соединенных последовательно, и подключить их между базой и соответствующим источником питания эмиттера. На рис.90 показаны примеры схем смещения. В последнем примере (рис.90,в) транзистор р-п-р-типа питает током заземленную нагрузку (он-источник тока). Остальные примеры (в которых используются транзисторы npn-типа) правильнее было бы называть «поглотителями» тока, но принято называть все схемы такого типа источниками тока. [Название «поглотитель» и «источник» связано с направлением тока; если ток поступает в какую-либо точку схемы, то это источник, и наоборот]. В первой схеме сопротивление делителя напряжения составляет приблизительно 1,3 кОм и очень мало по сравнению с сопротивлением со стороны базы, составляющим 100кОм (для h21э = 100).

Любое изменение коэффициента , связанное с изменением напряжения на коллекторе, не повлияет существенным образом на выходной ток, так как соответствующее изменение напряжения на базе совсем мало. В двух других схемах резисторы в цепи смещения выбраны так, чтобы протекающий ток составлял несколько миллиампер - этого достаточно, чтобы диоды были открыты.

Рабочий диапазон. Источник тока передает в нагрузку постоянный ток только до определенного конечного напряжения на нагрузке. В противном случае источник тока был бы способен генерировать бесконечную мощность. Диапазон выходного напряжения, в котором источник тока ведет себя как следует, называется рабочим диапазоном. Для рассмотренных только что транзисторных источников тока рабочий диапазон определяется из того, что транзистор должен находиться в активном режиме работы. Так, в первой схеме напряжение на коллекторе можно понижать до тех пор, пока не будет достигнут режим насыщения, т. е. до +12 В. Вторая схема, с более высоким напряжением на эмиттере, сохраняет свойства источника лишь до значения напряжения на коллекторе,  равного  приблизительно +5,2 В.

Во всех случаях напряжение на коллекторе может изменяться от значения напряжения насыщения до значения напряжения питания. Например, последняя схема работает как источник тока в диапазоне напряжения на нагрузке, ограниченном значениями 0 и +8,6 В. Если в нагрузке используются батареи или собственные источники питания, то напряжение на коллекторе может быть больше, чем напряжение источника питания. При использовании такой схемы рекомендуется следить за тем, чтобы не возник пробой транзистора (напряжение Uкэ не должно превышать значение Uкэпроб - напряжение пробоя перехода коллектор-эмиттер) и не рассеивалась излишняя мощность (определяемая величиной произведения IкUкэ).

В источнике тока напряжение на базе не обязательно должно быть фиксированным. Если предусмотреть возможность изменения напряжения Uб, то получим программируемый источник тока. Если выходной ток должен плавно отслеживать изменения входного напряжения, то размах входного сигнала uвх (напоминаем, что строчными буквами мы договорились обозначать изменения) должен быть небольшим, таким, чтобы напряжение на эмиттере никогда не уменьшалось до нуля. В таком источнике тока изменение выходного тока будет пропорционально изменениям входного напряжения.

Недостатки источников тока. Как сильно отличается транзисторный источник тока от идеального? Иными словами, изменяется ли ток в нагрузке при изменении, скажем напряжения, т.е. имеет ли источник тока эквивалентное сопротивление конечной величины (Rэкв < )? И если да, то почему? Наблюдаются эффекты двух видов:

  1.  При заданном токе коллектора и напряжение Uбэ, и коэффициент h21э (эффект Эрли) несколько изменяются при изменении напряжения коллектор-эмиттер. Изменение напряжения Uбэ, связанное с изменением напряжения на нагрузке, вызывает изменение выходного тока, так как напряжение на эмиттере (а следовательно, и эмиттерный ток) изменяется,. даже если напряжение на базе фиксировано. Изменение значения коэффициента h21э приводит к небольшим изменениям выходного (коллекторного) тока при фиксированном токе эмиттера, так как Iк  = IэIб; кроме того, немного изменяется напряжение на базе в связи с возможным изменением сопротивления источника смешения, обусловленного изменениями коэффициента h21э (а следовательно, и тока базы). Эти изменения незначительны. Например, изменение выходного тока для схемы, представленной на рис.90 а, составляет приблизительно 0,5% . В частности, при изменении напряжения на нагрузке от 0 до 8 В эффект Эрли обусловливает изменение тока на 0,5%, а нагрев транзистора-на 0,2%. Изменение коэффициента вносит дополнительный вклад в изменение выходного тока-0,05% (для жесткого делителя напряжения). Все эти изменения приводят к тому, что источник тока работает хуже, чем идеальный: выходной ток немного зависит от напряжения и, следовательно, его сопротивление не бесконечно.

2. Напряжение Uбэ и коэффициент h21э зависят от температуры. В связи с этим при изменении температуры окружающей среды возникает дрейф выходного тока. Кроме того, температура перехода изменяется при изменении напряжения на нагрузке (в связи с изменением мощности, рассеиваемой транзистором) и приводит к тому, что источник работает не как идеальный. Изменение напряжения Uбэ в зависимости от температуры окружающей среды можно скомпенсировать с помощью схемы, показанной на рис.91. В этой схеме падение напряжения между базой и эмиттером транзистора Т2 компенсируется падением напряжения на эмиттерном переходе Т1, который имеет такие же температурные характеристики. Резистор R3 играет роль нагрузки для Т1, необходимой для задания втекающего тока базы транзистора Т2. 

2.07. Усилитель с общим эмиттером

Рассмотрим источник тока, нагрузкой для которого служит резистор (рис.92). Напряжение на коллекторе равно  Uк=Uкк-IкRк.

Можно через емкость задать сигнал в цепь базы, тогда напряжение на коллекторе будет изменяться. Рассмотрим пример. представленный на рис.93. Конденсатор С выбран так, что фильтр высоких частот, образованный этим конденсатором и последовательно соединенными с ним резисторами смещения базы, пропускает все нужные частоты (резисторы в цепи базы обычно выбирают так, чтобы импеданс со стороны базы, т.е. входное сопротивление транзистора, был гораздо больше и им можно было пренебречь). Иначе говоря,

Благодаря напряжению смещения, приложенному к базе, и наличию эмиттерного резистора сопротивлением 1,0 кОм ток покоя коллектора составляет 1,0 мА. Этот ток создает на коллекторе напряжение +10 В (+20 В минус падение напряжения на сопротивлении 10 кОм при протекании тока 1,0 мА). Допустим теперь, что на базу подан сигнал Uб. Напряжение на эмиттере повторяет изменение напряжения на базе uэ- uб и вызывает изменение эмиттерного тока:  

и приблизительно такое же изменение коллекторного тока (транзистор имеет большой коэффициент h21э. Итак, первоначальное изменение напряжения на базе вызывает   изменение   коллекторного напряжения:

Стоп! Получается, что схема представляет собой усилитель напряжения, коэффициент усиления которого определяется следующим образом:

Коэффициент усиления   

В нашем примере коэффициент усиления равен -10000/1000, или -10. Знак минус говорит о том, что положительный сигнал на входе дает на выходе отрицательный сигнал (амплитуда которого в 10 раз больше, чем на входе). Такая схема называется усилителем с общим эмиттером с отрицательной обратной связью в цепи эмиттера.

Входное и выходное сопротивление для усилителя с общим эмиттером. Нетрудно определить входное и выходное сопротивление усилителя. Для входного сигнала схема представляет собой параллельное соединение резисторов 110 кОм, 10 кОм и входного сопротивления со стороны базы. Последнее приблизительно равно 100 кОм (сопротивление Rэ, увеличенное в h21э раз), а значит, входное сопротивление равно приблизительно 8 кОм (преобладающую роль играет сопротивление 10 кОм). Если используется развязывающий конденсатор, указанный на схеме, то получаем фильтр высоких частот с точкой - 3 дБ на частоте 200 Гц. Для сигналов в рабочей полосе частот (выше частоты, соответствующей точке — 3 дБ) конденсатором емкостью 0,1 мкФ можно пренебречь и учитывать только сопротивление 8 кОм, соединенное с ним последовательно.

Выходное сопротивление определяется как параллельное соединение сопротивления 10 кОм и выходного сопротивления транзистора со стороны коллектора. Что же получается? Если бы не коллекторный резистор, то схема не отличалась бы от источника тока. Коллектор обладает очень большим сопротивлением (порядка мегаОм), поэтому выходное сопротивление определяется коллекторным резистором, сопротивление которого составляет 10 кОм. Напомним, что сопротивление со стороны коллектора велико, а со стороны эмиттера мало (как и в схеме эмиттерного повторителя). В выходном сопротивлении усилителя с общим эмиттером преобладает сопротивление резистора нагрузки, стоящего в цепи коллектора, а выходное сопротивление эмиттерного повторителя определяется выходным сопротивлением транзистора со стороны эмиттера, а не сопротивлением нагрузки, стоящей в цепи эмиттера.

2.08. Схема расщепления фазы с единичным коэффициентом усиления

Иногда полезно иметь сигнал и его инверсию. т.е. два однородных сигнала, сдвинутые друг относительно друга по фазе на 180°. Получить такие сигналы нетрудно-нужно воспользоваться усилителем с общим эмиттером, коэффициент усиления которого равен —1 (рис.94). Напряжение покоя на коллекторе устанавливают равным 0,75 Uкк вместо привычного значения 0,5 Uкк. Это делается с уже известной нам целью - получить симметричный выходной сигнал без срезов на любом из выходов. Напряжение на коллекторе может изменяться от 0,5 Uкк до Uкк, а на эмиттере от  потенциала  земли  до 0,5 Uкк. Обращаем ваше внимание на то, что для симметричного усиления выходы схемы следует нагружать одинаковыми (или очень большими) импедансами.

Фазовращатель. На рис.95 показан хороший пример использования схемы расщепления фазы выходного сигнала. Схема позволяет регулировать фазу выходного синусоидального сигнала (от нуля до 180°) при условии, что входной сигнал тоже представляет собой синусоиду; амплитуда сигнала при регулировке фазы сохраняется постоянной. Работу схемы помогает понять векторная диаграмма напряжений, для нашей схемы представленная на рис.96; входной сигнал на ней изображен в виде единичного вектора, направленного вдоль действительной оси. Направления векторов, соответствующих сигналам Ur и Uк, должны быть такими, чтобы этим двум векторам соответствовал вектор постоянной длины, направленный вдоль действительной оси. В геометрии есть теорема, согласно которой геометрическим местом таких точек служит окружность. Итак. результирующий вектор (выходное напряжение) всегда имеет единичную длину, т. е. такую же, как вектор входного сигнала, так как R может изменяться от нуля до значений, значительно превышающих Zк на рабочей частоте. Обратите внимание, что величина фазового сдвига при данном положении потенциометра R зависит также от частоты входного сигнала. Следует отметить, что в качестве схемы, обеспечивающей регулируемый сдвиг фаз, можно использовать простейший RC-фильтр высоких (или низких) частот. Правда, в этом случае при регулировке фазы амплитуда выходного сигнала изменяется в широком диапазоне.

Отметим так же, что фазорасщепитель RC-типа нагружает схему расщепления фазы.

В идеальном случае нагрузка представляет собой импеданс, который велик по сравнению с коллекторным и эмиттерным резисторами. Поэтому данная схема не может применяться в случаях, когда требуется обеспечить широкий диапазон фазовых сдвигов. В следующей главе приведена улучшенная схема фазовращателя.

2.09. Крутизна

В предыдущем разделе мы проанализировали работу усилителя с общим эмиттером следующим образом:

а) предположив, что сигнал (напряжение) на базе изменяется в некоторых пределах, обнаружили, что напряжение на эмиттере имеет такой же размах;

б) подсчитали эмиттерный ток; затем, пренебрегая незначительным влиянием тока базы, определили размах коллекторного тока и

в) коллекторного напряжения. При этом коэффициент усиления есть просто отношение коллекторного напряжения (выходного) к напряжению на базе (входному).

Рассмотрим работу усилителя этого типа с другой точки зрения. Мысленно расчленим схему, как показано на рис.97.

Одна часть представляет собой управляемый напряжением источник тока, его ток покоя равен 1,0 мА, а коэффициент передачи составляет —1 мА/В. Коэффициент передачи представляет собой отношение выходного сигнала к входному; в данном случае он измеряется в единицах [ток/напряжение] или [1/сопротивление]. Величина, обратная сопротивлению, называется проводимостью (величина, обратная реактивному сопротивлению, называется реактивной проводимостью; величина, обратная импедансу или полному сопротивлению, называется полной проводимостью), и единицей ее измерения служит сименс, раньше эту единицу измерения называли мо (обратный ом). Если коэффициент передачи измеряется в единицах проводимости, то такой усилитель называется усилителем с передаточной проводимостью; отношение Iвых/Uвх называется крутизной и обозначается gм.

Итак, одна часть схемы представляет собой усилитель с передаточной проводимостью, коэффициент передачи которого  (крутизна)  составляет   1 мА/В (1000 мкСм или 1 мСм, а это есть не что иное, как 1/Rэ)- Другая часть схемы представляет собой нагрузочный резистор («усилитель»), преобразующий ток в напряжение. Резистор можно назвать усилителем с передаточным сопротивлением, его коэффициент усиления измеряется в единицах [напряжение/ток], т.е. в единицах сопротивления. В данном случае напряжение покоя (рабочее напряжение)-это Uкк, а коэффициент передачи (передаточное сопротивление) равен 10 кВ/А (10 кОм), а это есть не что иное, как Rк. Соединив эти две части последовательно, получим усилитель напряжения, общее усиление которого определяется произведением коэффициентов передачи составных частей. В данном случае:                              К = gм*Rк =Rк/ Rэ=-10 - безразмерная величина, равная отношению [(выходное напряжение)/(входное напряжение)].

Описанный метол очень полезен для анализа усилителей, так как позволяет рассматривать составные части схемы независимо друг от друга. Например, для усилителя с передаточной проводимостью можно оценить величину gм для схем различной конфигурации и для иных элементов, например для полевых транзисторов. Затем можно рассмотреть нагрузку (или часть схемы с передаточным сопротивлением) и оценить, как связан коэффициент усиления с диапазоном изменения напряжения. Если вас интересует общее усиление по напряжению, то его можно определить следующим образом:

Кu=gм*Rм, где Rм- передаточное сопротивление нагрузки. В конечном счете замена простой активной нагрузки схемой с высоким передаточным сопротивлением позволяет получать для одного каскада усилителя величину коэффициента усиления, равную 10000 и выше. С помощью описанного метода удобно рассматривать каскодный усилитель, с которым вы познакомитесь ниже.

В гл. 4, где расматриваются операционные усилители, приведено немало примеров усилителей, на входах и выходах которых действуют напряжения и токи. усилители напряжения, усилители тока, усилители с передаточной проводимостью, усилители с передаточным сопротивлением.

Предельный коэффициент усиления: границы применимости простейшей модели транзистора. В соответствии с нашей моделью коэффициент усиления по напряжению усилителя с обшим эмиттером равен -Rк/Rэ. Что произойдет, если сопротивление Rэ будет уменьшаться, стремясь к нулю? Согласно уравнению, коэффициент усиления будет при этом беспредельно возрастать. Однако измерения, выполненные в рассмотренной выше схеме, покажут, что, хотя при постоянном токе покоя, равном 1 мА, коэффициент усиления и растет, при Rэ = 0 (эмиттер заземлен) он становится равным всего 400. Окажется также, что усилитель начнет при этом работать как нелинейный элемент (выходной сигнал не воспроизводит по форме в точности входной), входное сопротивление становится небольшим и нелинейным, а смешение начинает зависеть от температуры. Очевидно, что модель транзистора, которой мы пользовались, несовершенна и ее необходимо дополнить, чтобы она пришла в соответствие с измерениями, описанными выше, и некоторыми другими фактами, на которых мы еще остановимся. Модель, которую мы сейчас рассмотрим, будет достаточно точна и удовлетворит нас в дальнейшем.

МОДЕЛЬ ЭБЕРСА-МОЛЛА ДЛЯ ОСНОВНЫХ ТРАНЗИСТОРНЫХ СХЕМ

2.10. Улучшенная модель транзистора: усилитель с передаточной проводимостью (крутизной)

Существенную поправку следует внести в правило 4 (разд. 2.01), которое определяет, что Iк = h21эIб. Мы рассматривали транзистор как усилитель тока, вход которого работает как диод. Это приближение является грубым, но для некоторых практических случаев большей точности и не требуется. Однако для того чтобы понять, как работают дифференциальные усилители, логарифмические преобразователи, схемы температурной компенсации и некоторые другие практически полезные схемы, следует рассматривать транзистор как элемент с передаточной проводимостью - коллекторный ток в нем определяется напряжением между базой и эмиттером.

Итак, правило 4 в измененном виде:

4. Если правила 1-3 соблюдены (разд. 2.01), то ток Iк связан с напряжением Uбэ следующей зависимостью:

где Uт=кТ/q= 25,3 мВ при комнатной температуре (20 °С), q- заряд электрона (1,60·1019 Кл). k -постоянная Больцмана (1.38·10-23 Дж/К), Т-абсолютная температура в Кельвинах (К = 0С + 273,16). Iнас-ток насыщения транзистора (зависит от Т). Тогда ток базы, который также зависит от Uбэ. можно приблизительно определить так:

Iб=Iк*h21э.

где «постоянная» h21э обычно принимает значения от 20 до 1000 и зависит от транзистора, Iк, Uкэ и температуры. Ток Iнас представляет собой обратный ток эмиттерного перехода. В активной области Iк >> Iнас и членом — 1 можно пренебречь.

Уравнение для Iк известно под названием «уравнение Эберса-Молла». Оно приблизительно описывает также зависимость тока от напряжения для диода, если Uт умножается на корректировочный коэффициент т со значением между 1 и 2. Следует запомнить, что в транзисторе коллекторный ток зависит от напряжение между базой и эмиттером, а не от тока базы (ток базы в грубом приближении определяется коэффициентом h21э). Экспоненциальная зависимость между током Iк и напряжением Uбэ точно соблюдается в большом диапазоне токов, обычно от наноампер до миллиампер. На рис.98 приведен график этой зависимости. Если измерить ток базы при различных значениях коллекторного тока, то получим график зависимости h21э от Iк (рис.99).

Согласно уравнению Эберса-Молла, напряжение между базой и эмиттером «управляет» коллекторным током, однако это свойство нельзя использовать непосредственно на практике (создавать смешение в транзисторе с помощью напряжения, подаваемого на базу), так как велик температурный коэффициент напряжения между базой и эмиттером. В дальнейшем вы увидите, как уравнение Эберса-Молла помогает решить эту проблему.

Практические правила для разработки транзисторных схем. На основании уравнения Эберса-Молла получены некоторые зависимости, которые часто используют при разработке схем:

1. Ступенчатая характеристика диода. На сколько нужно увеличить напряжение Uбэ, чтобы ток Iк увеличился в 10 раз? Из уравнения Эберса-Молла следует, что Uбэ нужно увеличить на Uтloge10, или на 60 мВ при комнатной температуре. Напряжение на базе увеличивается на 60 мВ при увеличении коллекторного тока в 10 раз. Эквивалентным является следующее выражение , где U измеряется в милливольтах.

2. Импеданс для малого сигнала со стороны эмиттера при фиксированном напряжении на базе. Возьмем производную от UБЭ по Iк: rэ=UТ/Iк=25/Iк Ом, где ток Ik измеряется в миллиамперах. Величина 25/Iк Ом соответствует комнатной температуре. Это собственное сопротивление эмиттера rэ выступает в качестве последовательного для эмиттерной цепи во всех транзисторных схемах. Оно ограничивает усиление усилителя с заземленным эмиттером, приводит к тому, что коэффициент усиления эмиттерного повторителя имеет значение чуть меньше единицы и не позволяет выходному сопротивлению эмиттерного повторителя стать равным нулю. Этот параметр относится к параметрам малого сигнала. Отметим, что крутизна для усилителя с заземленным эмиттером определяется следующим образом: gм =1/rэ

3. Температурная зависимость. Глядя на уравнение Эберса-Молла, можно предположить, что Uбэ имеет положительный температурный коэффициент. Однако, в связи с тем, что ток Iнас зависит от температуры, напряжение Uбэ уменьшается на 2,1 мВ/°С. В грубом приближении оно пропорционально 1/Табс, где Табс-абсолютная температура.

И еще одна зависимость пригодится нам на практике, правда, она не связана с уравнением Эберса-Молла. Речь идет об эффекте Эрли, описанном в разд. 2.06, который накладывает ограничения на выходную характеристику транзистора как источника тока.

4. Эффект Эрли. Uбэ хоть и в слабой мере, но зависит от Uкэ при постоянном токе Ik этот эффект обусловлен изменением эффективной ширины базы и описывается следующей приблизительной зависимостью: . Мы перечислили основные соотношения, которые могут быть полезны на практике. Эти соотношения, а не сами уравнения Эберса-Молла, используются при разработке транзисторных схем.

2.11. Еще раз об эмиттерном повторителе

Прежде чем мы еще раз рассмотрим усилитель с общим эмиттером, используя преимущества новой модели транзистора, ненадолго задержим свое внимание на скромном эмиттерном повторителе. Согласно модели Эберса-Молла эмиттерный повторитель должен иметь ненулевой выходной импеданс даже в том случае, когда схемой управляет источник напряжения, так как эмиттерный повторитель обладает вполне определенным сопротивлением rэ (см. предыдущий раздел, пункт 2). По той же причине усиление по напряжению будет немного меньше единицы, так как rэ и резистор нагрузки образуют делитель напряжения.

Эти явления нетрудно описать математически. При фиксированном напряжении на базе импеданс со стороны эмиттера есть не что иное, как Rвых = dUбэ/dIэ, но Iэ = Iк, поэтому Rвых =rэ - собственное сопротивление эмиттера [rэ = 25/Iк(мА)]. Например, на рис.100, а импеданс со стороны нагрузки rэ = 25 Ом, так как Iк = 1 мА. (Если используется эмиттерный резистор Rэ, то образуется параллельное соединение, на практике Rэ всегда значительно больше, чем rэ.) На рис.100, б представлена более распространенная ситуация-источник имеет конечное сопротивление  (для простоты в схеме опущены    компоненты    смещения – базовый делитель и блокировочный конденсатор - эти компоненты присутствуют на рис.100, в). В этом случае выходной импеданс эмиттерного повторителя - это просто rэ в последовательном соединении с Rист/ /(h21э +1) (опять же в параллельном соединении с несущественным резистором Rэ, если он присутствует). Например, если  = 1 кОм и Iк = 1 мА, то Rвых = 35 Ом (предположим, что h21э = 100). Нетрудно показать, что собственное сопротивление эмиттера rэ вносит также вклад во входной импеданс эмиттерного повторителя, как если бы оно было соединено последовательно с нагрузкой (на самом деле не с нагрузкой, а с параллельным соединением резистора, нагрузки и эмиттерного резистора). Другими словами, для схемы эмиттерного повторителя эффект Эберса-Молла состоит просто в добавлении последовательно подключенного сопротивления эмиттера rэ к полученным ранее результатам.

Усиление по напряжению эмиттерного повторителя несколько меньше единицы из-за наличия делителя напряжения, образованного rэ и нагрузкой. Это нетрудно вычислить, так как выход схемы находится в точке соединения rэ и : Gu = Uвых/Uвх; Rнагр/(rэ+Rнагр). Таким образом, если взять, например, повторитель, ток затухания которого равен 1 мА, а нагрузка составляет 1 кОм, то его усиление по напряжению будет равно 0,976.

2.13. Еще раз об усилителе с общим эмиттером

Выше мы определили усиление по напряжению для усилителя с общим эмиттером при условии, что сопротивление эмиттерного резистора равно нулю, но результат получили неверный. Дело в том. что транзистор обладает собственным эмиттерным сопротивлением, равным 25/Iк (мА) (выражено в омах), которое следует добавлять к сопротивлению включенного в эмиттерную цепь резистора. Это сопротивление значительно в тех случаях, когда, в цепь эмиттера включен небольшой резистор (или когда его нет вообще). Например, для усилителя, который мы рассмотрели выше, коэффициент усиления по напряжению равен — 10 кОм/rэ, или —400, при условии, что сопротивление эмиттерного резистора равно нулю. Мы предполагали раньше, что входной импеданс h2lэRэ равен нулю при Rэ = 0; на самом деле он приблизительно равен h21эrэ и в данном случае составляет около 2,5 кОм (ток покоя равен 1 мА).

Мы уже упоминали усилитель с «заземленным эмиттером» и схемы «с общим эмиттером». Эти схемы не следует путать. Усилитель с «заземленным эмиттером» -это усилитель с общим эмиттером, в котором Rэ = 0. В усилительном каскаде с общим эмиттером может присутствовать эмиттерный резистор; особенность этой схемы состоит в том, что цепь эмиттера является общей для входа и выхода схемы.

Недостатки однокаскадного усилителя с заземленным эмиттером. Дополнительное усиление, обусловленное отсутствием разистора в эмиттерной цепи Rэ = 0, мы получаем за счет ухудшения некоторых параметров усилителя. Как ни популярен усилитель с заземленным эмиттером в учебниках, на практике его следует использовать только в схемах, охваченных общей петлей отрицательной обратной связи. Для того чтобы понять, с чем это связано, рассмотрим рис.101.

1.  Нелинейность. Коэффициент усиления определяется  выражением  к = -gmRK = -RK/rэ = — RKIK (мА)/25, т. е. для тока покоя 1 мА он равен —400. Но дело в том, что ток 1К изменяется при изменении входного сигнала. В нашем примере коэффициент усиления может изменяться от — 800 (Uвых = 0, Iк = 2 мА) до нуля (Uвых = UKK, Iк = 0). Если на входе действует треугольный сигнал, то сигнал на выходе будет таким, как показано на рис.102. Усилитель вносит большие искажения, т. е. обладает плохой линейностью.  Усилитель с заземленным   эмиттером   без   обратной связи можно использовать лишь для небольших диапазонов изменения сигнала вблизи точки покоя. Что же касается усилителя с общим эмиттером, то его усиление почти не зависит от коллекторного тока, при условии что Rэ >> rэ; он обеспечивает усиление без искажений в большом диапазоне изменения сигнала.

2. Входное сопротивление. Входное сопротивление   приблизительно   равно   ZBX = h21э*rэ = (25h21э/Iк(мА)) Ом. Здесь мы опять сталкиваемся  с  тем,  что  ток  Iк изменяется при изменении выходного сигнала, а значит меняется и входное сопротивление. Если источник, питающий базу, обладает  небольшим  выходным  сопротивлением, то вы получите нелинейный переменный делитель напряжения, образованный источником сигнала и входным сопротивлением усилителя. Что касается усилителя  с  общим  эмиттером,   то   он обладает постоянным и высоким входным сопротивлением.

3.  Смещение. В усилителе с заземленным эмиттером смешение выполнить трудно. Возникает соблазн просто подать напряжение   (с   делителя),   которое   обеспечит нужный ток покоя в соответствии с уравнением Эберса-Молла. Однако так сделать нельзя, потому что напряжение Uбэ зависит от температуры (при фиксированном значении Iк) и изменяется на 2,1 мВС (фактически напряжение уменьшается при повышении температуры Т из-за того, что изменяется ток Iиас; в результате оказывается, что напряжение UБЭ приблизительно пропорционально 1/Т. где Т- абсолютная температура). Это ведет к тому, что коллекторный ток (при фиксированном значении С/БЭ) будет увеличиваться в 10 раз при повышении температуры на 30 °С. Такая нестабильность делает смещение неработоспособным, так как даже небольшие колебания температуры будут приводить усилитель в режим насыщения. Например, если напряжение смешения сделать равным половине напряжения питания коллектора, то усилитель с заземленным эмиттером будет переходить в режим насыщения при повышении температуры на 8°С.

О том, как решается задача смещения, вы узнаете из следующих разделов. Что касается усилителя с общим эмиттером, то здесь стабильное смещение создается с помощью напряжения, приложенного к базе; большая часть этого напряжения приходится на резистор в цепи эмиттера, тем самым обеспечивается постоянный ток покоя.

Эмиттерный резистор в качестве элемента обратной связи. Если к собственному сопротивлению эмиттера добавить сопротивление внешнего эмиттерного резистора, то многие параметры усилителя с общим эмиттером улучшатся, правда за счет снижения коэффициента усиления. Аналогичное явление рассматривается в следующих двух главах, посвященных использованию отрицательной обратной связи, позволяющей улучшить характеристики усилителя за счет частичной передачи выходного сигнала на вход. Это не простое совпадение, дело в том, что в усилителе с общим эмиттером используется одна из  форм  отрицательной  обратной связи. Представим себе, что транзистор - это элемент с передаточной  крутизной, в котором коллекторный ток (а следовательно, и выходное напряжение) зависит от напряжения, действующего между базой и эмиттером; на вход усилителя подается напряжение, действующее между базой и землей. Входное напряжение представляет собой напряжение между эмиттером  и  базой  минус  напряжение  (IЭRЭ). Следовательно, в схеме с общим эмиттером  действует   отрицательная   обратная связь, и благодаря этому улучшаются характеристики усилителя (высокая линейность и стабильность, большой входной импеданс;    выходной   импеданс   можно уменьшить, если ввести обратную связь непосредственно с коллектора).

2.13. Смещение в усилителе с общим эмиттером

Существует возможность задать смещение в усилителе с общим эмиттером и при необходимости получения максимально возможного коэффициента усиления (или если усилительный каскад охвачен петлей обратной связи). Есть три варианта схем смещения, которые можно комбинировать между собой: с помощью шунтируемого резистора в эмиттерной цепи, с помощью согласованного транзистора и с помощью обратной связи по постоянному току.

Шунтируемый резистор в эмиттерной цепи. Смещение можно обеспечить с помощью шунтируемого резистора в эмиттерной цепи, как показано на рис.103.

Для того чтобы облегчить задачу создания смещения, резистор Rэ выбран так, что его сопротивление составляет 0.1 RK: если резистор Rэ слишком мал, то напряжение на эмиттере будет намного меньше, чем падение напряжения между базой и эмиттером, а это приведет к температурной нестабильности точки покоя, так как напряжение UБЭ зависит от температуры.

Шунтирующий эмиттерный конденсатор следует выбирать так, чтобы его импеданс был небольшим по сравнению с rэ (а не с Rэ) на самой низкой из интересующих вас частот. В данном случае его импеданс составляет 25 Ом на частоте 650 Гц. В диапазоне рабочих частот входного сигнала для выбора входного конденсатора межкаскадной связи существенно, что входное сопротивление схемы определяется параллельным соединением сопротивления 10 кОм и входного сопротивления транзистора со стороны базы, в данном случае - это сопротивление 25 Ом, умноженное на h21э. т.е. приблизительно 2,5 кОм. Для сигналов постоянного тока сопротивление со стороны базы значительно больше (сопротивление эмиттерного резистора, умноженное на h21э, т.е. приблизительно 100 кОм), и именно благодаря этому можно обеспечить стабильное смещение.

Одна из разновидностей рассмотренной схемы отличается использованием в эмиттерной цепи двух последовательных резисторов, один из которых шунтируется. Например, нужно спроектировать усилитель, коэффициент усиления которого равен 50, ток покоя -1 мА, а напряжение UKK составляет +20 В; частота сигнала может изменяться от 20 Гц до 20 кГц. Если для решения поставленной задачи вы выберете схему с общим эмиттером, то получите усилитель, показанный на рис.104.

Коллекторный резистор выбран так, чтобы коллекторное напряжение покоя составляло 0,5Uкк. Эмиттерный резистор выбран с учетом требуемого значения коэффициента усиления и влияния rэ, составляющего 25/Iк (мА). Трудность состоит в том, что эмиттерное напряжение, равное лишь 0,175 В, будет подвержено существенным изменениям. Дело в том, что падение напряжения на переходе база-эмиттер, равное =0,6 В, зависит от температуры (относительное изменение составляет примерно —2,1 мВС), тогда как напряжение на базе поддерживается постоянным с помощью резисторов R1 и R2; например, вы можете убедиться, что при увеличении температуры на 20 °С коллекторный ток возрастает примерно на 25%.

Это неприятное явление можно устранить, если включить в эмиттерную цепь дополнительный зашунтированный конденсатором резистор, который не будет влиять на коэффициент усиления в рабочем диапазоне частот (рис.105).

Как и в предыдущей схеме, коллекторный резистор выбран здесь так, чтобы напряжение на коллекторе было равно 10 В (0.5 UKK). Нешунтируемый резистор в цепи эмиттера выбран таким образом, чтобы с учетом собственного сопротивления эмиттера, составляющего rэ = 25/IК (мА), коэффициент усиления был равен 50. Дополнительное сопротивление в цепи эмиттера должно быть таким, чтобы смещение было стабильным (хороший результат дает сопротивление, в 10 раз меньшее коллекторного). Напряжение базы выбрано так, чтобы ток эмиттера был равен 1 мА, при условии что сопротивление цепи смещения составляет десятую часть от сопротивления по постоянному току со стороны базы (в данном случае около 100 кОм). Сопротивление шунтирующего конденсатора в цепи эмиттера должно быть небольшим по сравнению с сопротивлением 180 + 25 Ом на самой низкой частоте диапазона. И наконец, входной конденсатор межкаскадной связи должен иметь небольшой импеданс по сравнению с входным сопротивлением усилителя на частоте входного сигнала, которое определяется параллельным соединением сопротивления делителя напряжения и сопротивления (180 + 25)/h21э Ом (на частотах входного сигнала сопротивление 820 Ом шунтировано конденсатором и равноценно замкнутой накоротко цепи).

В другом варианте этой схемы цепи сигнала и постоянного тока разделены (рис.106). Это разделение позволяет изменять коэффициент усиления (за счет резистора 180 Ом), не изменяя смещения.

Использование согласованного транзистора. Для получения напряжения базы, обеспечивающего нужный ток коллектора, можно использовать согласованные транзисторы, при этом будет обеспечена автоматическая температурная компенсация (рис.107).

В цепи коллектора транзистора Т1 протекает ток 1 мА. потенциал коллектора близок потенциалу земли (точнее, превышает потенциал земли примерно на величину падения напряжения U БЭ): если транзисторы Т1 и Т2 представляют собой согласованную пару (например, два транзистора, изготовленных на одном кристалле кремния), то смешение транзистора Т2 будет таким, что этот транзистор также будет порождать ток 1 мА и напряжение на его коллекторе будет равно + 10 В. при этом симметричный сигнал на коллекторе может иметь размах ±10 В. Изменение температуры не влияет на работу схемы, так как оба транзистора находятся   в   одинаковых   температурных условиях. Вот чем хороши «монолитные» сдвоенные транзисторы.

Обратная  связь  по  постоянному   току.

Для стабилизации точки покоя (рабочей точки) можно использовать обратную связь по постоянному току. Один из методов такой стабилизации показан на рис.108.

Определенное улучшение стабильности можно получить, если напряжение смешения подавать с коллектора, а не от источника UKK. Напряжение на базе превышает потенциал земли на величину падения напряжения на диоде; так как напряжение смещения снимается с делителя 10:1, то напряжение на коллекторе превышает потенциал земли на величину, равную падению напряжения на диоде, увеличенному в 11 раз, т. е. составляет = 7 В. Эта схема уменьшает склонность к насыщению (которая может возникнуть, например, если коэффициент БЕТТА будет необычно большим) за счет того, что при уменьшении коллекторного напряжения уменьшается напряжение смещения на базе. Эту схему можно использовать в тех случаях, когда не нужна высокая стабильность. Точка покоя (выхода) подвержена дрейфу примерно на 1 В за счет изменений температуры окружающей среды. Это связано с тем, что напряжение между базой и эмиттером имеет большой температурный коэффициент. Большей стабильностью обладает схема, в которой петля обратной связи охватывает несколько каскадов усиления. Примеры вы увидите там, где речь пойдет об обратной связи. Для того, чтобы понять, как работает эта схема, нужно внимательнее рассмотреть обратную связь. Например, обратная связь уменьшает входной и выходной импедансы. Для входного сигнала сопротивление R1 уменьшено за счет усиления по напряжению, которым обладает каскад. В данном случае резистор R1, эквивалентен резистору с сопротивлением 200 Ом, один конец которого заземлен. В следующей главе мы рассмотрим обратную связь более подробно, и тогда вы сможете определить коэффициент усиления по напряжению и входной и выходной импедансы данной схемы.

Отметим, что сопротивление резистора смещения базы можно увеличить, и тогда увеличится входной импеданс схемы, но ток базы уже нельзя будет считать пренебрежимо малым. Можно, например, взять такие резисторы: R1 = 220 кОм и R2 = 33 кОм. Другая возможность состоит в том, что в цепь обратной связи можно включить шунтирующий конденсатор, как показано на рис.109.

При этом удается избавиться от обратной связи (а следовательно, и от пониженного входного импеданса) на частотах сигнала.

Некоторые замечания относительно смешения и усиления. Первое важное замечание касается усилительных каскадов с заземленным эмиттером: создается впечатление, что коэффициент усиления по напряжению можно увеличить за счет увеличения тока покоя, так как собственное сопротивление эмиттера rэ уменьшается при увеличении тока. Однако, хотя rэ и уменьшается при увеличении коллекторного тока, для получения того же самого рабочего напряжения на коллекторе приходится использовать меньший коллекторный резистор, и в результате выигрыша нет. На самом деле можно показать, что в усилителе с заземленным эмиттером, смещенным так, что напряжение покоя составляет 0,5 Uкк, коэффициент усиления по напряжению для малого сигнала равен К= 20 UKK независимо от величины тока покоя (рабочего тока).

Если требуется увеличить коэффициент усиления каскада по напряжению, то можно, например, в качестве активной нагрузки использовать источник тока. Так как источник тока обладает очень большим импедансом, то на одном каскаде можно получить коэффициент усиления по напряжению, равный 1000 и выше. Такой подход не пригоден в схемах со смешением, которые мы рассмотрели выше; каскад должен являться частью схемы, охваченной общей петлей обратной связи по постоянному току.  Об этом поговорим в следующей главе. Внешняя нагрузка такого усилителя обязательно должна быть велика, в противном случае усиление, полученное за счет большого коллекторного сопротивления, будет потеряно. В качестве такой высокоомной нагрузки можно использовать эмиттерный повторитель, полевой транзистор или операционный усилитель.

В радиочастотных усилителях, предназначенных для резонансного усиления в узкой полосе частот, в качестве коллекторной нагрузки принято использовать параллельный LC-контур; в этом случае можно получить очень большой коэффициент усиления по напряжению, так как на частоте сигнала LC-контур обладает большим импедансом (как источник тока), а его импеданс по постоянному току мал. LC-контур можно перестраивать и благодаря резонансной характеристике он подавляет сигналы, лежащие за пределами рабочего диапазона. К преимуществам этой схемы можно отнести также возможность получения размаха выходного сигнала, равного 2UKK, и возможность использования трансформаторной связи.

2.14. Токовые зеркала

От схемы смещения с использованием согласованной пары транзисторов легко перейти к так называемому токовому зеркалу (рис.110). Работа токового зеркала «программируется» путем задания коллекторного тока транзистора T1. Напряжение UБЭ для T1 устанавливается в соответствии с заданным током, температурой окружающей среды и типом транзистора. В результате оказывается заданным режим схемы, и транзистор Т2, согласованный с транзистором Т1 (лучше всего использовать монолитный сдвоенный транзистор), передает в нагрузку такой же ток, что задан для Т1. Небольшими базовыми токами можно пренебречь.

Одно из достоинств описанной схемы состоит в том, что ее диапазон устойчивости по напряжению равен UKK за вычетом нескольких десятых долей вольта, так как нет падения напряжения на эмиттерном резисторе. Кроме того, во многих случаях удобно задавать ток с помощью тока. Легче всего получить управляющий ток Iпр с помощью резистора (рис.111). В связи с тем, что эмиттерные переходы транзисторов представляют собой диоды, падение напряжения на которых мало по сравнению с Uкк. резистор 14,4 кОм формирует управляющий, а следовательно, и выходной ток величиной 1 мА.

Токовые зеркала можно использовать в тех случаях, когда в транзисторной схеме необходим источник тока. Их широко используют при проектировании интегральных схем, когда:

а) под рукой есть много согласованных транзисторов и

б) разработчик хочет создать схему, которая бы работала в широком диапазоне питающих напряжений. Существуют даже безрезисторные интегральные операционные I усилители, в которых режимный ток всего усилителя  задается  с  помощью  одного   внешнего резистора,  а токи  отдельных внутренних усилительных каскадов формируются с помошью токовых зеркал.

Недостатки токовых зеркал, обусловленные эффектом Эрли. Простое токовое зеркало обладает одним недостатком: выходной ток несколько изменяется при изменении выходного напряжения, т.е. выходное сопротивление схемы не бесконечно. Это связано с тем, что при заданном токе транзистора Т2 напряжение UБЭ слегка меняется в зависимости от коллекторного напряжения (проявление эффекта Эрли); иначе говоря, график зависимости коллекторного тока от напряжения между коллектором и эмиттером при фиксированном напряжении между базой и эмиттером не является горизонтальной линией (рис.112). Практически ток может изменяться приблизительно на 25% в диапазоне устойчивой работы схемы, т. е. характеристики такой схемы существенно хуже, чем характеристики рассмотренного выше источника тока с эмиттерным резистором.

Если же нужен более высококачественный источник тока (чаще всего таких требований не возникает), то подойдет схема, показанная на рис.113.

Эмиттерные резисторы выбраны таким образом, что падение напряжения на них составляет несколько десятых долей вольта; такая схема -гораздо лучший источник тока, так как в ней изменения напряжения UБЭ, обусловленные изменениями напряжения икэ, оказывают пренебрежимо малое влияние на выходной ток. В этой схеме также следует использовать согласованные транзисторы.

Токовое зеркало Уилсона. На рис.114 представлено еще одно токовое зеркало, обеспечивающее высокую степень постоянства выходного тока.

Транзисторы T1 и Т2 включены как в обычном токовом зеркале. Благодаря транзистору Т3 потенциал коллектора транзистора Т1 фиксирован и на удвоенную величину падения напряжения на диоде ниже, чем напряжение питания UKK. Такое включение позволяет подавить эффект Эрли в транзисторе Tl коллектор которого теперь служит для задания режима работы схемы; выходной ток определяется транзистором Т2. Транзистор Т3 не влияет на баланс токов, если его базовый ток пренебрежимо мал; его единственная функция состоит в том, чтобы зафиксировать потенциал коллектора T1. В результате в токозадающих транзисторах Т1 и Т2 падения напряжения на эмиттерных переходах фиксированы; транзистор Т3 можно рассматривать как элемент, который просто передает выходной ток в нагрузку, напряжение на которой является переменным (аналогичный прием используют при каскодном включении, которое мы рассмотрим позже). Кстати, транзистор Т3 не обязательно согласовывать с транзисторами Т1 и Т2.

Схемы с несколькими выходами и коэффициенты отражения тока. Схему токового зеркала можно построить так, что вытекающий выходной ток (или втекающий-в случае использования транзисторов п-р-п-типа) будет передаваться в несколько нагрузок. О том, как эта идея воплощается в жизнь, дает представление схема, изображенная на рис.115.

Отметим, что если один из транзисторов-источников тока переходит в режим насыщения (в том случае, например, когда отключается его нагрузка), то его база будет отбирать повышенный ток из обшей линии, соединяющей базы всех транзисторов, и в связи с этим уменьшаются остальные выходные токи. Положение можно улучшить, если включить в схему еще один транзистор (рис.116).

На рис.117 представлены два варианта многовыходного токового зеркала. Эти схемы отражают удвоенный (или половинный) управляющий ток. При разработке токовых зеркал в интегральных схемах коэффициент отражения тока задают путем выбора размеров (площадей) эмиттерных переходов.

Фирма Texas Instruments предлагает токовые зеркала Уилсона в виде законченных монолитных схем в удобных транзисторных корпусах типа ТО-92. Серия TL011 включает схемы, которые обеспечивают отношения 1:1, 1:2, 1:4 и 2:1, при этом диапазон устойчивости выходного напряжения определяется значениями от 1,2 до 40 В. Схема Уилсона обладает хорошими характеристиками источника тока - при постоянном программирующем токе выходной ток увеличивается только на 0.05% на вольт - помимо всего она очень недорога (50 центов и Дешевле). К сожалению, эти полезные схемы существуют только на транзисторах п-р-п-типа.

Еще один способ получения выходного тока, кратного управляющему, состоит во включении дополнительного резистора в Цепь эмиттера выходного транзистора (рис.118). Если схема работает с токами различной плотности, то, согласно уравнению Эберса-Молла разность напряжений   Uбэ зависит  только  от  отношения плотностей токов. Для согласованных транзисторов отношение коллекторных токов равно отношению плотностей токов. График на рис.119 позволяет определить разность напряжений между базой и эмиттером в подобном случае и полезен при разработке токовых зеркал с неединичным отражением.

4.3. СХЕМА С ОБЩЕЙ БАЗОЙ

Если схему с общей базой (рис.120) сравнить со схемой с общим эмиттером (рис.4.10), то можно увидеть, что источник напряжения сигнала включен между одними и теми же выводами.

Поэтому получается то же усиление по напряжению, хотя и с положительным знаком, так как вместо dUm = dUe здесь имеет место соотношение dUBE = dUe. Существенное различие между двумя схемами состоит в том, что источник напряжения сигнала для схемы с общей базой находится между базовым выводом и общей точкой. Поэтому, как видно из рис.120, этот источник нагружен не базовым, а эмиттерным током. Следовательно, входное сопротивление для схемы с общей базой меньше, чем в схеме с общим эмиттером, в ß раз. Для точного расчета запишем соотношения для рис.120:

При RC<<rCE получим приближенно

что совпадает с результатом проведенного качественного анализа схемы.

Выходное сопротивление равно

При Rg→0 из этой формулы получим , что имеет место также в схеме с общим эмиттером. Повышению выходного сопротивления препятствует Rg так как оно обеспечивает отрицательную обратную связь по току.

Вследствие малого входного сопротивления схема с общей базой на низких частотах применяется редко. В высокочастотной области она обладает некоторыми преимуществами перед схемой с общим эмиттером.

НЕКОТОРЫЕ ТИПЫ УСИЛИТЕЛЬНЫХ КАСКАДОВ

2.15. Двухтактные выходные каскады

В этой главе уже было отмечено, что если в эмиттерном повторителе используется транзистор п-р-п-типа, то ток не может втекать в схему, если же используется транзистор р-n-р-типа, то ток не может вытекать. В результате повторитель с несимметричным выходом, в котором используются расщепленные источники питания, а ток покоя имеет большую величину, при двуполярном сигнале может работать только на заземленную нагрузку (такие схемы называют иногда усилителями класса А). Ток покоя должен быть по крайней мере таким же большим, как максимальный выходной ток при пиковых значениях сигнала, в результате схема в состоянии покоя рассеивает большую мощность. Например, на рис.121

показана схема повторителя, который работает на нагрузку с сопротивлением 8 Ом и мощностью до 10 Вт. Повторитель Т1 на транзисторе р-п-р-типа служит для того, чтобы снизить требования к мощности входного сигнала схемы и скомпенсировать напряжение смещения UБЭ в транзисторе Т2 (напряжение 0 В на входе дает 0 В на выходе). Конечно, для простоты Т1 можно было бы опустить. Большой источник тока, используемый в качестве нагрузки в цепи эмиттера Т1, служит для того, чтобы обеспечить достаточный базовый ток для Т2 при пиковом значении сигнала. Резистор в цепи эмиттера не используют потому, что он должен был бы иметь слишком малое сопротивление (50 Ом или меньше), для того чтобы при пиковом значении сигнала можно было гарантировать базовый ток Т2, равный по крайней мере 50 мА; при этом ток нагрузки был бы максимальным, а падение напряжения на резисторе минимальным: результирующий ток покоя Т1 оказался бы чрезмерно большим.

Выходной сигнал схемы может изменяться в диапазоне ± 15 В (пиковые значения) и отдавать в нагрузку требуемую мощность (эффективное напряжение 9 В на сопротивлении 8 Ом). Однако в отсутствие сигнала выходной транзистор рассеивает мощность 55 Вт, а эмиттерный резистор - еще 110 Вт. Для усилителей такого типа, принадлежащих к классу А (транзистор всегда в открытом состоянии), характерно, что мощность, рассеиваемая в состоянии покоя, во много раз превышает максимальную выходную мощность; схема оставляет желать лучшего, особенно если речь идет о системах, связанных с большим выделением мощности.

На рис.122 показана двухтактная схема повторителя, которая работает аналогичным образом. Транзистор Т1 открыт при положительных значениях сигнала, а транзистор Т2-при отрицательных. При нулевом входном напряжении коллекторного тока нет и мощность не расеивается. При выходной мощности 10 Вт каждый транзистор рассеивает мощность менее 10 Вт.

Переходные искажения в двухтактных каскадах. Предыдущей схеме присуще следующее свойство: выходной сигнал отслеживает входной сигнал с разницей на величину падения напряжения UБЭ: на положительном интервале входного сигнала выходное напряжение примерно на 0.6 В меньше, чем входное, на отрицательном интервале наоборот. Для синусоидального входного сигнала выходной сигнал будет таким, как показано на рис 123.

На языке радиотехники такое искажение сигнала называется переходным искажением. Лучше всего немного сместить двухтактный каскад в состояние проводимости, как показано на рис.124 (еще один метод устранения переходного искажения связан с использованием обратной связи, хотя он имеет некоторые недостатки).

Резисторы смещения R переводят диоды в состояние проводимости, благодаря этому напряжение на базе Т1 превышает входное напряжение на величину падения напряжения на диоде, а напряжение на базе Т2 на величину падения напряжения на диоде меньше, чем входное напряжение. Теперь, когда входной сигнал проходит через нуль, проводящим транзистором вместо Т2 становится Т1; один из выходных транзисторов всегда открыт. Резистор R выбран так, чтобы обеспечивался необходимый базовый ток в выходных транзисторах при пиковых значениях выходного сигнала. Например, если используются источники питания +20 В, а нагрузка имеет сопротивление 8 Ом и мощность 10 Вт для синусоидального сигнала, пиковое базовое напряжение составляет около 13,5 В, а пиковый ток нагрузки 1,6 А. Допустим, что коэффициент ß транзистора равен 50 (мощные транзисторы обычно имеют меньший коэффициент усиления по току, чем малосигнальные транзисторы), тогда для получения базового тока, равного 32 мА, потребуются базовые резисторы с сопротивлением 220 Ом (при пиковом значении сигнала ток базы будет определяться напряжением 6,5 В, равным разности 13,5 В и напряжения источника питания UKK).

Температурная стабильность двухтактных усилителей класса В. Рассмотренный выше усилитель (иногда такие схемы называют усилителями класса В, при этом имеют в виду, что каждый транзистор находится в открытом состоянии только в течение половины периода входного сигнала) имеет один серьезный недостаток: он не обладает температурной стабильностью. По мере того как выходные транзисторы нагреваются (когда приложен входной сигнал, они нагреваются, так как рассеивают мощность), напряжение UБЭ начинает убывать, а коллекторный ток покоя - возрастать. Выделяющееся при этом дополнительное тепло усугубляет положение и повышает вероятность того, что в схеме разовьется неконтролируемая тепловая положительная обратная связь (эта вероятность зависит от ряда факторов: насколько велик радиатор для отвода тепла, совпадает ли температура диодов с температурой транзисторов и др.). Даже если этого не произойдет и схема не выйдет из строя, необходимо обеспечить более надежное управление ее работой; обычно прибегают к схеме, показанной на рис.125.

Для примера здесь показан случай, когда входной сигнал снимается с коллектора предшествующего каскада: резистор выполняет двойную функцию: он является коллекторным резистором транзистора Т2 и формирует ток для смещения диодов и смещающего резистора в основной двухтактной схеме. Резисторы R3 и R4 обычно имеют сопротивление несколько ом или ниже; они «амортизируют» критическое смешение тока покоя: напряжение между базами выходных транзисторов должно быть немного больше, чем удвоенное падение напряжения на диоде; дополнительное падение напряжения обеспечивает регулируемый резистор смещения R2 (его часто заменяют еще одним диодом). Падение напряжения на резисторах R3 и R4 составляет несколько десятых долей вольта, благодаря этому температурное изменение напряжения UБЭ не приводит к быстрому возрастанию тока (чем больше падение напряжения на R3 и R4. тем менее чувствителен к температуре ток) и схема работает стабильно. Стабильность увеличивается, если диоды имеют тепловой контакт с выходными транзисторами (или их радиаторами).

Температурную стабильность схемы можно оценить, если вспомнить, что падение напряжения между базой и эмиттером уменьшается примерно на 2.1 мВ при увеличении температуры на каждый градус (°С), а коллекторный ток увеличивается в 10 раз при каждом увеличении напряжения между базой и эмиттером на 60 мВ. Например, если резистор R2 заменить диодом, то напряжение между базами транзисторов Т2 и Т3 будет равно утроенному падению напряжения на диоде, а на последовательное соединение резисторов R3 и R4 будет приходиться падение напряжения, равное падению напряжения на диоде. (Следовательно, резисторы R3 и R4 должны быть подобраны таким образом, чтобы обеспечивался нужный ток покоя, например 50 мА для усилителя звуковых частот.) Самым худшим для этой схемы является случай, когда смещающие диоды не имеют теплового контакта с выходными транзисторами.

Рассмотрим такой самый худший случай и вычислим увеличение тока покоя выходного каскада, соответствующее повышению температуры выходного транзистора на 30 °C. Кстати, для усилителя мощности такое увеличение температуры не является большим. Указанное повышение температуры при постоянном значении тока приводит к уменьшению напряжения Uбэ выходных транзисторов приблизительно на 63 мВ и к увеличению падения напряжения на резисторах R3 и R4 приблизительно на 20% (т.е. приблизительно на 20% увеличивается ток покоя). Для усилителя без эмиттерных резисторов (рис.124) аналогичный расчет показывает, что ток покоя увеличится в 10 раз (напомним, что ток IK увеличивается в 10 раз при возрастании напряжения UБЭ на 60 мВ), т.е. его рост составит 1000%. Очевидно, что температурная стабильность последней схемы с резисторами смещения в цепях эмиттеров значительно выше.

Еще одно преимущество этой схемы состоит в том, что регулировка тока покоя позволяет управлять величиной переходных искажений. Двухтактные усилители, в которых смещение используется для получения достаточно большого тока покоя в момент перехода сигнала через нуль, называют иногда усилителями класса АВ: это название подразумевает, что в течение некоторого интервала времени оба транзистора находятся в состоянии проводимости. Практически при выборе тока покоя следует найти компромисс между уменьшением искажения и рассеиваемой мощностью в состоянии покоя. Почти всегда для ослабления переходного искажения используют еше обратную связь, о которой пойдет речь в следующей главе. Другой метод смещения двухтактного повторителя представлен на рис.126. Транзистор Т4 работает как регулируемый диод: базовые резисторы образуют делитель напряжения, благодаря которому напряжение между коллектором и эмиттером Т4 стабилизируется при значении, пропорциональном напряжению между базой и эмиттером (оно равно падению напряжения на диоде); при увеличении напряжения Uкэ транзистор переходит в режим большей проводимости, и наоборот. Например, если оба резистора имеют сопротивления 1 кОм. то транзистор удерживает напряжение между коллектором и эмиттером, равное удвоенному падению напряжения на диоде. В показанном на рис.126 случае регулировка смещения позволяет установить напряжение между базами в диапазоне от 1 до 3.5 падения напряжения на диоде. Конденсатор емкостью 1 мкФ служит для того, чтобы на базы выходных транзисторов

поступил одинаковый сигнал: такой шунтирующий конденсатор полезен в любой схеме смешения. В данной схеме коллекторный резистор транзистора Тг заменен источником тока Т5. Эту разновидность схемы с успехом используют на практике - дело в том, что с помощью резистора бывает иногда трудно получить нужный базовый ток для транзистора Т2 при значениях сигнала, близких к максимальным. Для того чтобы удовлетворить требованиям со стороны транзистора Т2, резистор должен быть небольшим, но тогда большим будет коллекторный ток покоя транзистора Т1 (рассеиваемая мощность также будет велика), а коэффициент усиления по напряжению также будет небольшим (напомним, что К=-Rк/Rэ). Задачу формирования базового тока для транзистора Т2 позволяет решить также метод следящей связи, который мы рассмотрим ниже.

2.16. Составной транзистор (схема Дарлингтона)

Если соединить транзисторы, как показано на рис.127, то полученная схема будет работать как один транзистор, причем его коэффициент ß будет равен произведению коэффициентов ß составляющих транзисторов. Этот прием полезен для схем, работающих с большими токами (например, для стабилизаторов напряжения или выходных каскадов усилителей мощности) или для входных каскадов усилителей, если необходимо обеспечить большой входной импеданс.

В транзисторе Дарлингтона падение напряжения между базой и эмиттером в два раза больше обычного, а напряжение насыщения равно по крайней мере падению напряжения на диоде (так как потенциал эмиттера транзистора Т1 должен превышать потенциал эмиттера транзистора Т2 на величину падения напряжения на диоде). Кроме того, соединенные таким образом   транзисторы   ведут  себя   как   один транзистор с достаточно малым быстродействием, так как транзистор Т1 не может  быстро  выключить  транзистор   Т2. С учетом этого свойства обычно между базой и эмиттером транзистора Т2 включают резистор (рис.128). Резистор R предотвращает смешение транзистора  Т2  в область проводимости за счет токов утечки транзисторов Т1 и Т2. Сопротивление резистора выбирают так, чтобы токи утечки (измеряемые в наноамперах для малосигнальных транзисторов и в сотнях микроампер для мощных транзисторов) создавали на нем падение напряжения,  не превышающее   падения   напряжения   на диоде, и вместе с тем чтобы через него протекал ток, малый по сравнению с базовым током транзистора Т2. Обычно сопротивление R составляет несколько сотен ом в мощном транзисторе Дарлингтона и несколько тысяч ом в малосигнальном транзисторе Дарлингтона.

Промышленность выпускает транзисторы Дарлингтона в виде законченных модулей, включающих, как правило, и эмиттерный резистор. Примером такой стандартной схемы служит мощный п-р-п-транзистор Дарлингтона типа 2N6282. его коэффициент усиления по току равен 4000 (типичное значение) для коллекторного тока, равного 10 А.

Соединение транзисторов по схеме Шиклай (Sziklai). Соединение транзисторов по схеме Шиклаи представляет собой схему, подобную той, которую мы только что рассмотрели. Она также обеспечивает увеличение коэффициента  β.  Иногда такое соединение называют комплементарным транзистором   Дарлингтона   (рис.  129). Схема ведет себя как транзистор п-р-п-типа, обладающий большим коэффициентом β. В схеме действует одно напряжение между базой и эмиттером, а напряжение насыщения, как и  в предыдущей схеме, равно по крайней мере падению напряжения на диоде. Между базой и эмиттером транзистора  Т2 рекомендуется включать резистор с небольшим сопротивлением. Разработчики   применяют   эту   схему в мощных двухтактных выходных каскадах, когда хотят использовать выходные транзисторы только одной полярности. Пример такой схемы показан на рис.130. Как и  прежде,  резистор  представляет собой коллекторный  резистор  транзистора   T1 Транзистор Дарлингтона,  образованный транзисторами  Т2  и  Т3,  ведет себя как один транзистор п-р-п-типа с большим коэффициентом усиления по току. Транзисторы Т4 и  Т5, соединенные по схеме Шиклаи, ведут себя как мощный транзистор р-п-р-типа с большим коэффициентом усиления. Как и прежде, резисторы R3 и R4 имеют небольшое сопротивление. Эту схему иногда называют двухтактным повторителем с квазидополнительной симметрией. В настоящем каскаде с дополнительной симметрией (комплементарном) транзисторы Т4 и Т5 были бы соединены по схеме Дарлингтона.

Транзистор со сверхбольшим значением коэффициента усиления по току. Составные транзисторы -транзистор Дарлингтона и ему подобные-не следует путать с транзисторами со сверхбольшим значением коэффициента усиления по току, в которых очень большое значение коэффициента h21Э получают в ходе технологического процесса изготовления элемента. Примером такого элемента служит транзистор типа 2N5962 для которого гарантируется минимальный коэффициент усиления по току, равный 450. при изменении коллекторного тока в диапазоне от 10 мкА до 10 мА; этот транзистор принадлежит к серии элементов 2N5961-2N5963, которая характеризуется диапазоном максимальных напряжений UКЭ от 30 до 60 В (если коллекторное напряжение должно быть больше, то следует пойти на уменьшение значения β). Промышленность выпускает согласованные пары транзисторов со сверхбольшим значением коэффициента β. Их используют в усилителях с низким уровнем сигнала, для которых транзисторы должны иметь согласованные характеристики. Примерами подобных стандартных схем служат схемы типа LM394 и МАТ-01; они представляют собой транзисторные пары с большим коэффициентом усиления, в которых напряжение Uбэ согласовано до долей милливольта (в самых хороших схемах обеспечивается согласование до 50 мкВ), а коэффициент h21Э-до 1%. Схема типа МАТ-03 представляет собой согласованную пару р—п -р-транзисторов.

Транзисторы со сверхбольшим значением коэффициента β можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат   операционные   усилители   типа LM111.

2.18. Дифференциальные усилители

Дифференциальный усилитель - это широко известная схема, используемая для усиления разности напряжений двух входных сигналов. В идеальном случае выходной сигнал не зависит от уровня каждого из входных сигналов, а определяется только их разностью. Когда уровни сигналов на обоих входах изменяются одновременно, то такое изменение входного сигнала называют синфазным. Дифференциальный или разностный входной сигнал называют еще нормальным или полезным. Хороший дифференциальный усилитель обладает высоким коэффициентом ослабления синфазного сигнала (КОСС), который представляет собой отношение выходного полезного сигнала к выходному синфазному сигналу, при условии что полезный и синфазный входные сигналы имеют одинаковую амплитуду. Обычно КОСС определяют в децибелах. Диапазон изменения синфазного входного сигнала задает допустимые уровни напряжения, относительно которого должен изменяться входной сигнал.

Дифференциальные усилители используют в тех случаях, когда слабые сигналы можно потерять на фоне шумов. Примерами таких сигналов являются цифровые сигналы, передаваемые по длинным кабелям (кабель обычно состоит из двух скрученных проводов), звуковые сигналы (в радиотехнике понятие «балансный» импеданс обычно связывают с дифференциальным импедансом 600 Ом), радиочастотные сигналы (двухжильный кабель является дифференциальным), напряжения электрокардиограмм, сигналы считывания информации из магнитной памяти и многие другие. Дифференциальный усилитель на приемном конце восстанавливает первоначальный сигнал, если синфазные помехи не очень велики. Дифференциальные каскады широко используют при построении операционных усилителей, которые мы рассматриваем ниже. Они играют важную роль при разработке усилителей постоянного тока (которые усиливают частоты вплоть до постоянного тока, т.е. не используют для межкаскадной связи конденсаторы): их симметричная схема по сути своей приспособлена для компенсации температурного дрейфа.

На рис.131 показана основная схема дифференциального усилителя. Выходное напряжение измеряется на одном из коллекторов относительно потенциала земли; такой усилитель называют схемой с однополюсным выходом или разностным усилителем и он распространен наиболее широко. Этот усилитель можно рассматривать как устройство, которое усиливает дифференциальный сигнал и преобразует его в несимметричный сигнал, с которым могут работать обычные схемы (повторители напряжения, источники тока и т. п.). Если же нужен дифференциальный сигнал, то его снимают между коллекторами.

Чему равен коэффициент усиления этой схемы? Его нетрудно подсчитать: допустим, на вход подается дифференциальный сигнал, при этом напряжение на входе 1 увеличивается на величину uBX (изменение напряжения для малого сигнала по отношению ко входу).

До тех пор пока оба транзистора находятся в активном режиме, потенциал точки А фиксирован. Коэффициент усиления можно определить как и в случае усилителя на одном транзисторе, если заметить, что входной сигнал оказывается дважды приложенным к переходу база-эмиттер любого транзистора: Кдиф = Rк/2(rэ +Rэ). Сопротивление резистора Rэ обычно невелико (100 Ом и меньше), а иногда этот резистор вообще отсутствует. Дифференциальное напряжение обычно усиливается в несколько сотен раз.

Для того чтобы определить коэффициент усиления синфазного сигнала, на оба входа усилителя нужно подать одинаковые сигналы uBX. Если вы внимательно рассмотрите этот случай (и вспомните, что через резистор R1 протекают оба эмиттерных тока), то получите Ксинф = RK/(2R1 +Rэ). Мы пренебрегаем сопротивлением rэ, так как резистор R1 обычно выбирают большим - его сопротивление составляет по крайней мере несколько тысяч ом. На самом деле сопротивлением Rэ тоже можно пренебречь. КОСС приблизительно равен R1/(rэ + Rэ). Типичным примером дифференциального усилителя является схема, представленная на рис.132. Рассмотрим, как она работает.

Сопротивление резистора RK выбрано так, чтобы коллекторный ток покоя можно было взять равным 100 мкА. Как обычно, для получения максимального динамического диапазона потенциал коллектора установлен равным 0,5 UKK. У транзистора T1 коллекторный резистор отсутствует, так как его выходной сигнал снимается с коллектора другого транзистора. Сопротивление резистора R1 выбрано таким, что суммарный ток равен 200 мкА и поровну распределен между транзисторами, когда входной (дифференциальный) сигнал равен нулю. Согласно только что выведенным формулам коэффициент усиления дифференциального сигнала равен 30, а коэффициент усиления синфазного сигнала равен 0,5. Если исключить из схемы резисторы 1.0 кОм, то коэффициент усиления дифференциального сигнала станет равен 150, но при этом уменьшится входное (дифференциальное) сопротивление с 250 до 50 кОм (если необходимо, чтобы величина этого сопротивления имела порядок мегаом, то во входном каскаде можно использовать транзисторы Дарлингтона).

Напомним, что в несимметричном усилителе с заземленным эмиттером при выходном напряжении покоя 0,5 UKK максимальное усиление равно 20 Uкк, где UKK выражено в вольтах. В дифференциальном усилителе максимальное дифференциальное усиление (при Rэ = 0) вдвое меньше, т.е. численно равно двадцатикратному падению напряжения на коллекторном резисторе при аналогичном выборе рабочей точки. Соответствующий максимальный КОСС (при условии, что Rэ=0) также численно в 20 раз превышает падение напряжения на R1.

Смещение с помощью источника тока.

Усиление синфазного сигнала в дифференциальном усилителе можно значительно уменьшить, если резистор R1 заменить источником тока. При этом действующее значение сопротивления R1 станет очень большим, а усиление синфазного сигнала будет ослаблено почти до нуля. Представим себе, что на входе действует синфазный сигнал: источник тока в эмиттерной цепи поддерживает полный эмиттерный ток постоянным, и он (в силу симметрии схемы) равномерно распределяется между двумя коллекторными цепями. Следовательно, сигнал на выходе схемы не изменяется. Пример подобной схемы приведен на рис.133.

Для этой схемы, в которой использованы монолитная транзисторная пара типа LM394 (транзисторы Т1 и Т2) и источник тока типа 2N5963, величина КОСС определяется отношением 100 000:1 (100 дБ). Диапазон входного синфазного сигнала ограничен значениями —12 и + 7 В: нижний предел определяется рабочим диапазоном источника тока в эмиттерной   цепи,   а   верхний - коллекторным напряжением покоя.

Не забывайте о том, что в этом усилителе, как и во всех транзисторных усилителях, должны быть предусмотрены цепи смешения по постоянному току. Если, например, для межкаскадной связи на входе используется   конденсатор,   то   должны быть включены заземленные базовые резисторы. Еще одно предостережение относится в особенности к дифференциальным усилителям без эмиттерных резисторов: биполярные транзисторы могут выдержать обратное смещение на переходе база-эмиттер  величиной  не  более  6  В, затем наступает пробой; значит, если подать на вход дифференциальное входное напряжение большей величины, то входной каскад будет разрушен (при условии, что отсутствуют эмиттерные резисторы). Эмиттерный резистор ограничивает ток пробоя и предотвращает разрушение схемы, но характеристики транзисторов могут в этом случае деградировать (коэффициент h21э, шумы и др.). В любом случае входной  импеданс  существенно  падает, если возникает обратная проводимость.

Применения дифференциальных схем в усилителях постоянного тока с однополюсным выходом.

Дифференциальный усилитель может прекрасно работать как усилитель постоянного тока даже с несимметричными   (односторонними)   входными сигналами. Для этого нужно один из его входов заземлить, а на другой подать сигнал (рис.134). Можно ли исключить «неиспользуемый» транзистор из схемы? Нет. Дифференциальная схема обеспечивает компенсацию температурного дрейфа,  и, даже когда один  вход заземлен, транзистор  выполняет  некоторые  функции: при изменении температуры напряжения   Uбэ  изменяются  на   одинаковую величину, при этом не происходит никаких изменений на выходе и не нарушается балансировка   схемы.   Это   значит,   что изменение напряжения Uбэ не усиливается с коэффициентом Кдиф (его усиление определяется коэффициентом Ксинф, который можно уменьшить почти до нуля). Кроме того, взаимная компенсация напряжений Uбэ приводит к тому,  что на входе не нужно учитывать падения напряжения величиной 0,6 В. Качество такого усилителя постоянного тока ухудшается только из-за несогласованности напряжений Uбэ или   их   температурных   коэффициентов. Промышленность выпускает транзисторные пары и интегральные дифференциальные усилители с очень высокой степенью согласования (например, для стандартной согласованной   монолитной   пары   n-р-n-транзисторов типа МАТ-01 дрейф напряжения   Uбэ   определяется   величиной 0.15 мкВ/°С или 0,2 мкВ за месяц).

В предыдущей схеме можно заземлить любой из входов. В зависимости от того, какой вход заземлен, усилитель будет или не будет инвертировать сигнал. (Однако, из-за наличия эффекта Миллера, речь о котором пойдет в разд. 2.19, приведенная здесь схема предпочтительна для диапазона высоких частот). Представленная схема является неинвертирующей, значит, в ней заземлен инвертирующий вход. Терминология, относящаяся к дифференциальным усилителям, распространяется также на операционные усилители, которые представляют собой те же дифференциальные усилители с высоким коэффициентом усиления.

Использование токового зеркала в качестве активной нагрузки. Иногда желательно, чтобы однокаскадный дифференциальный усилитель, как и простой усилитель с заземленным эмиттером, имел большой коэффициент усиления. Красивое решение дает использование токового зеркала в качестве активной нагрузки усилителя (рис.135).

Транзисторы Т1 и Т2 образуют дифференциальную пару с источником тока в эмиттерной цепи. Транзисторы Т3 и Т4, образующие токовое зеркало, выступают в качестве коллекторной нагрузки. Тем самым обеспечивается высокое значение сопротивления коллекторной нагрузки, благодаря этому коэффициент усиления по напряжению достигает 5000 и выше при условии, что нагрузка на выходе усилителя отсутствует. Такой усилитель используют, как правило, только в схемах, охваченных петлей обратной связи, или в компараторах (их мы рассмотрим в следующем разделе). Запомните, что нагрузка для такого усилителя обязательно должна иметь большой импеданс, иначе усиление будет существенно ослаблено.

Дифференциальные усилители как схемы расщепления фазы. На коллекторах симметричного дифференциального усилителя возникают сигналы, одинаковые по амплитуде, но с противоположными фазами. Если снимать выходные сигналы с двух коллекторов, то получим схему расщепления фазы. Конечно, можно использовать дифференциальный усилитель с дифференциальными входами и выходами. Дифференциальный выходной сигнал можно затем использовать для управления еше одним дифференциальным усилительным каскадом, величина КОСС для всей схемы при этом значительно увеличивается.

Дифференциальные усилители как компараторы. Благодаря высокому коэффициенту усиления и стабильным характеристикам дифференциальный усилитель является основной составной частью компаратора-схемы, которая сравнивает входные сигналы и оценивает, какой из них больше. Компараторы используют в самых различных областях: для включения освещения и отопления, для получения прямоугольных сигналов из треугольных, для сравнения уровня сигнала с пороговым значением, в усилителях класса D и при импульсно-кодовой модуляции, для переключения источников питания и т.д. Основная идея при построении компаратора заключается в том, что транзистор должен включаться или выключаться в зависимости от уровней входных сигналов. Область линейного усиления не рассматривается - работа схемы основывается на том, что один из двух входных транзисторов в любой момент находится в режиме отсечки. Типичное применение с захватом сигнала рассматривается в следующем разделе на примере схемы регулирования    температуры,    в    которой используются резисторы, сопротивление которых зависит от температуры (термисторы).

2.19. Емкость и эффект Миллера

До сих пор мы пользовались моделью транзистора для сигналов постоянного тока или низкой частоты. В простейшей модели транзистора в виде усилителя тока и в более сложной модели Эберса-Молла напряжения, токи и сопротивления рассматривают со стороны различных выводов транзистора. Пользуясь этими моделями, мы уже охватили достаточно широкий круг вопросов, и на самом деле они содержат в себе почти все, что необходимо учитывать при разработке транзисторных схем. Однако до сих пор мы не принимали во внимание важный момент - внешние цепи и сами переходы транзистора обладают некоторой емкостью, которую необходимо учитывать при разработке быстродействующих и высокочастотных схем. На самом деле, на высоких частотах емкость зачастую определяет работу схемы: на частоте 100 МГц емкость перехода, равная 5 пкФ, имеет импеданс 320 Ом.

Более подробно мы рассмотрим этот вопрос в гл. 13. Сейчас мы хотим просто поставить вопрос, проиллюстрировать его на примере некоторых схем и предложить методы его решения. Конечно, в этой главе мы не можем не коснуться причины самого явления. Рассматривая транзистор в новом аспекте, мы познакомимся с эффектом Миллера и каскодными схемами.

Емкость схемы и перехода. Емкость ограничивает скорость изменения напряжений в схеме, так как любая схема имеет собственные конечные выходные импеданс и ток. Когда емкость перезаряжается от источника с конечным сопротивлением, ее заряд происходит по экспоненциальному закону с постоянной времени RC: если же емкость заряжает идеальный источник тока, то снимаемый с нее сигнал будет изменяться по линейному закону. Общая рекомендация заключается в следующем:   для  ускорения   работы  схемы следует уменьшать импеданс источника и емкость нагрузки и увеличивать управляющий ток. Однако некоторые особенности связаны с емкостью обратной связи и со входной емкостью. Коротко остановимся на этих вопросах.

Схема на рис.136 иллюстрирует, как проявляются емкости переходов транзистора. Выходная емкость образует RC-цепь с выходным сопротивлением Rн (сопротивление Rн включает в себя как сопротивление коллектора, так и сопротивление нагрузки, а емкость Сн- емкость перехода и емкость нагрузки), в связи с этим спад сигнала начинается при частоте f=1/2πRнСн. То же самое можно сказать о входной емкости и сопротивлении источника Ru.

Эффект Миллера. Емкость Ск6 играет иную роль. Усилитель обладает некоторым коэффициентом усиления по напряжению Ku, следовательно, небольшой сигнал напряжения на входе порождает на коллекторе сигнал, в Кu раз превышающий входной (и инвертированный по отношению к входному). Из этого следует, что для источника сигнала емкость Ск6 в (Ku+1) раз больше, чем при подключении Ск6 между базой и землей, т.е. при расчете частоты среза входного сигнала можно считать, что емкость обратной связи ведет себя как конденсатор емкостью Cкб(Ku+1), подключенный между входом и землей. Эффективное увеличение емкости Скб и называют эффектом Миллера.

Эффект Миллера часто играет основную роль в спаде усиления, так как типичное значение емкости обратной связи около 4 пкФ соответствует (эквивалентно) емкости в несколько сотен пикофарад, присоединенной на землю.

Существует несколько методов борьбы с эффектом Миллера, например, он будет полностью устранен, если использовать усилительный каскад с общей базой. Импеданс источника можно уменьшить, если подавать сигнал на каскад с заземленным эмиттером через эмиттерный повторитель. На рис.137 показаны еще две возможности. В дифференциальном усилителе (без резистора в коллекторной цепи Т1) эффект Миллера не наблюдается; эту схему можно рассматривать как эмиттерный повторитель, подключенный к каскаду с заземленной базой. На второй схеме показано каскодное включение транзисторов. T1-это усилитель с заземленным эмиттером, резистор Rн является общим коллекторным резистором. Транзистор Т2 включен в коллекторную цепь. Для того, чтобы предотвратить изменение сигнала в коллекторе T1 (и тем самым устранить эффект Миллера) при протекании коллекторного тока через резистор нагрузки. Напряжение U+ -это фиксированное напряжение смещения, обычно оно на несколько вольт превышает напряжение на эмиттере Т1 и поддерживает коллектор Т1 в активной области. На рис.137 представлена лишь часть каскодной схемы; в нее можно включить зашунтированный эмиттерный резистор и делитель напряжения для подачи смещения на базу (подобные примеры были рассмотрены в начале настоящей главы) или охватить всю схему петлей обратной связи по постоянному току. Напряжение U+ можно формировать с помощью делителя или зенеровского диода; для того чтобы напряжение было жестко фиксировано на частотах сигнала, можно шунтировать резистор в базе Т2.

Паразитные емкости могут создавать и более сложные проблемы, чем те, которых мы сейчас коснулись. В частности: а) спад усиления, обусловленный наличием емкости обратной связи и выходной емкости, сопровождается побочными эффектами, которые мы рассмотрим в следующей главе; б) входная емкость также оказывает влияние на работу схемы даже при наличии мощного источника входных сигналов; в частности, ток, который протекает через С, не усиливается транзистором, т.е. входная емкость «присваивает» себе часть входного тока, вследствие чего коэффициент усиления малого сигнала h21э на высоких частотах снижается и на частоте fT становится  равным  единице;

в) дело осложняется также тем, что емкости переходов зависят от напряжения, емкость С изменяется столь сильно при изменении базового тока, что ее даже не указывают в паспортных данных на транзистор, вместо этого указывается значение частоты fT; г) если транзистор работает как переключатель, то заряд, накопленный в области базы в режиме насыщения, также вызывает уменьшение быстродействия.

НЕКОТОРЫЕ ТИПИЧНЫЕ ТРАНЗИСТОРНЫЕ СХЕМЫ

Рассмотрим несколько примеров транзисторных схем, которые иллюстрируют основные идеи, изложенные выше. Круг этих примеров ограничен, так как в реальных схемах часто используют отрицательную обратную связь, которую мы будем изучать далее.

2.21. Стабилизированный источник напряжения

На рис.138 показана очень распространенная схема. Ток резистора R1 открывает транзистор T1. Когда напряжение на выходе достигает значения 10 В, транзистор Т2 переходит в открытое состояние (потенциал базы достигает 5 В) и дальнейшее увеличение выходного напряжения предотвращается за счет отвода избытка тока с базы транзистора T1 Источник питания можно сделать регулируемым, если резисторы R2 и R3 заменить потенциометром. По сути дела, это пример схемы с отрицательной обратной связью: Т2 «следит» за состоянием выхода и «предпринимает соответствующие меры», если величина выходного напряжения отличается от нужной.

2.22. Терморегулятор

На рис.2.76 показана схема регулятора температуры, основанная на использовании   термистора - чувствительного   элемента,  сопротивление  которого  зависит от температуры. Дифференциальная схема на составных транзисторах T1 - T2 сравнивает напряжение, формируемое регулируемым делителем эталонного напряжения на резисторах R4-R6, с напряжением, которое снимается с делителя, образованного термистором и резистором R2. (Если производить     сравнение     относительно одного и того же источника, то результат не будет зависеть от колебаний напряжения источника; приведенная схема называется мостиком Уитстона.) Токовое зеркало   на   транзисторах   Т5,   Т6   является активной нагрузкой и служит для увеличения  коэффициента   усиления,   а  токовое зеркало на транзисторах Т7, Т8 обеспечивает эмиттерный ток. Транзистор Т9 сравнивает выходное напряжение дифференциального   усилителя   с   фиксированным напряжением  и  переводит  в насыщение составной транзистор Т10,  Т11, который таким образом подает мощность на нагреватель в случае, если термистор охлажден слишком сильно. Выбор сопротивления резистора R9 зависит от требующегося тока. В данной схеме этот резистор включает защитный транзистор Т12, если величина выходного тока превышает 6 А; тем самым отключается сигнал с базы составного транзистора Т10, T11 и предотвращается выход схемы из строя.

2.23. Простая логическая схема на транзисторах и диодах

На рис.139 представлена схема, которая решает задачу: включение звуковой сигнализации (звонка) при условии, что одна дверца машины открыта и водитель находится за рулем. В приведенной схеме все транзисторы работают как переключатели (находятся в режиме отсечки или насыщения). Диоды Д1 и Д2 образуют так называемую схему ИЛИ, которая выключает транзистор T1, если одна из дверц открыта (переключатель замкнут). Однако потенциал коллектора Т1 сохраняет значение, близкое к потенциалу земли, и предотвращает включение звукового сигнала, если не замкнут переключатель П3 (водитель находится за рулем); при выполнении последнего условия резистор R2 обеспечивает включение транзистора Т3 и на звонок подается напряжение  12 В.

Диод Д3 обеспечивает падение напряжения, благодаря которому транзистор T1 будет выключен, если замкнуты переключатели П1 и П2, а диод Д4 предохраняет транзистор Т3 от индуктивных переходных процессов, возникающих при отключении звонка.

ПОЛЕВЫЕ ТРАНЗИСТОРЫ

В этой главе мы до сих пор имели дело с биполярными плоскостными транзисторами, характеристики которых описываются уравнениями Эберса-Молла. Биполярные плоскостные транзисторы были первыми транзисторами и до сих пор они преобладают в разработке аналоговых схем. Однако было бы ошибкой не сказать сейчас несколько слов о транзисторе особого типа - о полевом транзисторе.

Полевой транзистор во многом похож на обычный биполярный транзистор. Он представляет собой усилительное устройство, имеющее 3 вывода, и может иметь любую полярность. Один из выводов (затвор) предназначен для управления током, который протекает между двумя другими выводами (истоком и стоком). Этот транзистор обладает, однако, одним особым свойством: через затвор ток не протекает, за исключением токов утечки. Это значит, что входные сопротивления могут быть очень большими, их предельные значения связаны лишь с наличием емкостей или утечек. При использовании полевых транзисторов нет необходимости заботиться о величине тока, протекающего через базу, что было совершенно обязательно при разработке схем на биполярных транзисторах, о которых мы вели речь в этой главе. На практике входные токи имеют порядок пикоампер. К настоящему времени полевые  транзисторы  зарекомендовали  себя как надежные устройства, способные выполнять разнообразные функции. Их предельно допустимые напряжения и токи сравнимы с соответствующими напряжениями и токами биполярных транзисторов.

В большинстве устройств на основе транзисторов (согласованные пары, дифференциальные и операционные усилители, компараторы, токовые ключи и усилители, радиочастотные усилители, цифровые схемы) используют полевые транзисторы и зачастую они обладают лучшими характеристиками. Более того, микропроцессоры и запоминающие устройства (а также другие крупные устройства цифровой электроники) строятся исключительно на основе полевых транзисторов. И наконец, в области разработки микромощных устройств также преобладают полевые транзисторы.

Теперь о том, чем они отличаются друг от друга. В биполярном n—р—n - транзисторе переход коллектор - база смещен в обратном направлении и обычно ток через него не течет. Подача на переход база-эмиттер напряжения около 0,6 В преодолевает «потенциальный барьер» диода, приводя к поступлению электронов в область базы, где они испытывают сильное притяжение со стороны коллектора. Хотя при этом через базу будет протекать некоторый ток, большинство такого рода «неосновных носителей» захватывается коллектором. Результатом является коллекторный ток, управляемый (меньшим по величине) током базы. Ток коллектора пропорционален скорости инжекции неосновных носителей в базу, которая является экспоненциальной функцией разности потенциалов база-эмиттер (уравнение Эберса-Молла). Биполярный транзистор можно рассматривать как усилитель тока (с огрубленно постоянным коэффициентом усиления h21э) или как прибор-преобразователь проводимости (Эберс-Молл).

В полевом транзисторе, как следует из его названия, проводимостью канала управляет электрическое поле, создаваемое приложенным к затвору напряжением. Здесь нет прямосмещенных р—n –переходов, так что ток через затвор не течет и это, возможно, наиболее важное преимущество ПТ перед биполярными транзисторами. Как и последние, ПТ бывают двух полярностей: n-канальные (с проводимостью за счет электронов) и р- канальные (с дырочной проводимостью). Эти полярности аналогичны уже известным нам соответственно n-р-n и p-n-p - транзисторам биполярного типа. Однако разнообразие ПТ этим не ограничивается, что может приводить к путанице. Во-первых, ПТ могут изготавливаться с затворами двух различных типов (в результате мы имеем ПТ с р-n -переходом и ПТ с изолированным затвором, так называемые МОП- транзисторы), а во-вторых, двумя типами легирования канала (что дает ПТ обогащенного и обедненного типа).

Рассмотрим вкратце возможности, предоставляемые ПТ различного типа. Предварим, однако, это рассмотрение несколькими замечаниями общего плана. Наиболее важной характеристикой ПТ является отсутствие тока затвора. Получаемое, как следствие этого, высокое входное полное сопротивление (оно может быть больше 1014 Ом) существенно во многих применениях и в любом случае упрощает проектирование схем. В качестве аналоговых переключателей и усилителей со сверхвысоким входным полным сопротивлением ПТ не имеют себе равных. Сами по себе или в сочетании с биполярными транзисторами они легко встраиваются в интегральные схемы.

Так как на малой площади в ИМС может быть размещено большее число слаботочных ПТ, то они особенно полезны для создания больших интегральных микросхем (БИС), применяемых в цифровой технике, таких как микрокалькуляторы, микропроцессоры и устройства памяти. Плюс к тому недавнее появление сильноточных ПТ (30 А или более) позволяет заменить биполярные транзисторы во многих применениях, зачастую получая более простые схемы с улучшенными параметрами.

3.01. Характеристики полевых транзисторов

Иной новичок буквально «впадает в столбняк», впрямую сталкиваясь с обескураживающим разнообразием типов ПТ, разнообразием, возникающим как следствие возможных комбинаций полярности (p- и n-канальные), вида изоляции затвора (ПТ с полупроводниковым переходом или МОП - транзисторы с изолятором в виде окисла), а также типа легирования канала (ПТ обогащенного или обедненного типа). Из восьми имеющихся в результате этих комбинаций возможностей шесть могли бы быть реализованы, а пять - реализованы на практике. Основной интерес представляют четыре случая из этих пяти.

Чтобы понять, как работает ПТ (и исходя из здравого смысла), будет правильно, если мы начнем только с одного типа, точно так, как мы сделали с биполярным nрn - транзистором. Хорошо разобравшись с ПТ выбранного типа, мы в дальнейшем будем иметь минимум трудностей в изучении остальных членов этого семейства.

Входные характеристики ПТ. Рассмотрим вначале n - канальный МОП-транзистор обогащенного типа, биполярным аналогом которого является n—р — n - транзистор (рис.140). В нормальном режиме сток (или соответствующий ему коллектор) имеет положительный потенциал относительно истока (эмиттера). Ток от стока к истоку отсутствует, пока на затвор (базу) не будет подано положительное по отношению к истоку напряжение. В последнем случае затвор становится «прямосмещенным», и возникает ток стока, который весь проходит к истоку. На рис.141 показано, как изменяется ток стока Ic в зависимости от напряжения сток-исток Uси, при нескольких значениях управляющего напряжения затвор-исток Uзи. Для сравнения здесь же приведено соответствующее семейство кривых зависимости Iк от Uкэ для обычного биполярного n-p-n -транзистора. Очевидно, что n-канальные МОП-транзисторы и биполярные n-p-n- транзисторы во многом схожи.

Подобно n-р-n- транзистору, ПТ имеет большое приращение полного сопротивления стока, в результате чего при напряжении Uси свыше 1-2 В ток стока почтя не меняется. Для этой области характеристик ПТ неудачно выбрано название «область насыщения», тогда как у биполярных транзисторов соответствующая область называется «активной». Подобно биполярному транзистору, чем больше смещение затвора ПТ относительно истока, тем больше ток стока. В любом случае поведение ПТ ближе к идеальным устройствам - преобразователям проводимости (постоянный ток стока при неизменном напряжении затвор-исток), чем биполярных транзисторов; согласно уравнению Эберса-Молла у биполярных транзисторов должны быть превосходные характеристики выходной проводимости, однако эти идеальные характеристики не достигаются из-за эффекта Эрли.

До сих пор ПТ выглядел подобно n-p-n- транзистору. Посмотрим, однако, на ПТ поближе. С одной стороны, свыше нормального диапазона ток насыщения стока растет довольно умеренно при увеличении напряжения затвора (Uзи). Фактически он пропорционален (Uзи-Uп)2, где Uп - «пороговое напряжение затвора», при котором начинает идти ток стока (Для ПТ на рис.141 Uп=1.63 В): сравните этот слабый квадратичный закон с крутой экспоненциальной зависимостью, данной нам Эберсом и Моллом. Во-вторых, постоянный ток затвора равен нулю, так что мы не должны смотреть на ПТ как на устройство, усиливающее ток (коэффициент усиления тока был бы равен бесконечности). Вместо этого будем рассматривать ПТ как характеризуемое крутизной устройство - преобразователь проводимости с программированием тока стока напряжением затвор-исток, -так, как это мы делали с биполярным транзистором в толковании Эберса-Молла. Напомним, что крутизна gm есть просто отношение ic/uси (как и обычно, строчные буквы используются, чтобы показать «мало-сигнальные» изменения параметра: т.е. iс/uси = dIc/dUcи). В-третьих, у МОП- транзистора затвор действительно изолирован от канала сток-исток; поэтому, в отличие от биполярных транзисторов (и от ПТ с р-n –переходом, как мы далее увидим), можно подавать на него положительное (или отрицательное) напряжение до 10 В и более, не заботясь о диодной проводимости. И наконец, ПТ отличается от биполярного транзистора в так называемой линейной области графика, где его поведение довольно точно соответствует поведению резистора, даже при отрицательном Uси; это оказывается очень полезным свойством, поскольку, как вы уже могли догадаться, эквивалентное сопротивление сток-исток программируется напряжением затвор-исток.

Два примера. В ПТ еще найдется, чем нас удивить. Однако прежде чем углубляться в детали, посмотрим на две простые переключающие схемы. На рис.142 показан МОП-транзисторный эквивалент рис.2.3. первого из рассмотренного нами насыщенного транзисторного переключателя. Схема на ПТ даже проще, поскольку здесь мы совершенно не должны заботиться о неизбежно возникшем ранее компромиссе между необходимостью задать соответствующий необходимый для переключения ток базы (рассматривая наихудший случай - минимальное значение h21э в сочетании с сопротивлением холодной нити лампы) и исключить избыточное расходование энергии. Вместо этого мы всего лишь подаем на затвор, имеющий высокое полное входное напряжение, полное напряжение питания постоянного тока. Поскольку включенный ПТ ведет себя как резистор с малым по сравнению с нагрузкой сопротивлением, потенциал стока станет при этом близок к потенциалу земли; типичный мощный МОП- транзистор имеет Rвкл<0.2 Ом, что превосходно для данной задачи.

На рис.143 показана схема «аналогового переключателя», которую вообще невозможно выполнить на биполярных транзисторах. Идея этой схемы состоит в том, чтобы переключать проводимость ПТ из разомкнутого (затвор смешен в «обратном» направлении) в замкнутое состояние («прямое» смешение затвора), тем самым блокируя или пропуская аналоговый сигнал (позже мы увидим множество причин выполнять такого рода вещи). В данном случае мы должны лишь обеспечить, чтобы на затвор подавалось более отрицательное переключающее напряжение, чем любой размах входного переключаемого сигнала (ключ разомкнут) или на несколько вольт более положительное, чем любой входной сигнал (ключ замкнут). Биполярные транзисторы для такой схемы непригодны, поскольку база проводит ток и образует с коллектором и эмиттером диоды, что приводит к опасному эффекту «защелкивания». В сравнении с этим МОП- транзистор восхитительно прост, нуждаясь лишь в подаче на затвор (являющийся практически разомкнутой цепью) напряжения, равного размаху входного аналогового сигнала. Будьте, однако, внимательны: наше рассмотрение этой схемы было до некоторой степени упрощением - например, мы игнорировали влияние емкости затвор - канал, а также вариации Rвкл при изменении сигнала. Позже мы еще поговорим об аналоговых ключах.

3.02. Типы ПТ

n-канальные, p-канальные ПТ. Теперь о генеалогическом древе. Во-первых, полевые транзисторы (как и биполярные) могут выпускаться обеих полярностей. Таким образом, зеркальным отображением нашего n-канального МОП-транзистора является p-канальный МОП- транзистор. Его характеристики симметричны и напоминают характеристики р-n-р- транзистора: сток нормально имеет отрицательное смещение по отношению к истоку, и ток стока будет проходить, если на затвор подать отрицательное по отношению к истоку напряжение не менее одного - двух вольт. Симметрия несовершенна, поскольку носителями являются не электроны, а дырки с меньшей «подвижностью» и «временем жизни неосновных носителей». Эти параметры полупроводника важны для свойств транзисторов, а выводы стоит запомнить: р - канальные ПТ имеют обычно более плохие характеристики, а именно более высокое пороговое напряжение, более высокое Rвкл и меньший ток насыщения.

МОП- транзисторы, ПТ с р-n- переходом. У МОП- транзисторов (металл-окисел-полупроводник) затвор изолирован от проводящего канала тонким слоем SiO2 (стекла), наращенного на канал (рис.144). Затвор, который может быть металлическим или легированным полупроводником, действительно изолирован от цепи исток-сток (характеристическое сопротивление  > 1014 Ом) и действует на проводимость канала только своим электрическим полем. Иногда МОП-транзисторы называют полевыми транзисторами с изолированным затвором. Изолирующий слой довольно тонкий, обычно его толщина не превышает длины волны видимого света и он может выдержать напряжение затвора до +20 В и более. МОП-транзисторы просты в применении, поскольку на затвор можно подавать напряжение любой полярности относительно истока, и при этом через затвор не будет проходить никакой ток. Эти транзисторы, однако, в большой степени подвержены повреждениям от статического электричества, вы можете вывести из строя устройство на МОП-транзисторах буквально одним прикосновением.

Символическое изображение МОП-транзистора показано на рис.145. Здесь представлен дополнительный вывод, «тело» или «подложка» - кусок кремния, на котором выполнен ПТ (см. рис.144). Так как подложка образует с каналом диодное соединение, напряжение на ней должно быть ниже напряжения проводимости. Она может быть соединена с истоком или с точкой схемы, в которой напряжение ниже (выше), чем у истока n-канального (p-канального) МОП-транзистора. Обычно на схемах вывод подложки не показывается; более того, часто инженеры используют символ с симметричным затвором. К сожалению, при этом не остается ничего, что позволило бы вам отличить сток от истока, но что еще хуже, нельзя отличить n-канальный транзистор от р-канального! Мы будем использовать только нижние схемные изображения, дабы исключить недоразумения, хотя часто мы будем оставлять вывод подложки неподключенным.

В ПТ с р-n-переходом затвор образует с расположенным под ним каналом полупроводниковый переход. Это влечет за собой важное следствие, состоящее в том, что в ПТ с р—n -переходом во избежание прохождения тока через затвор последний не должен быть смещен в прямом направлении относительно канала. Например, у n-канального ПТ с р-n-переходом диодная проводимость будет наблюдаться по мере того как напряжение на затворе приближается к +0.6 В по отношению к концу канала с более отрицательным потенциалом (обычно это исток). Поэтому затвор работает, будучи смещен в обратном направлении по отношению к каналу, и в цепи затвора нет никакого тока, кроме тока утечки. Схемные изображения ПТ с p-n-переходом представлены на рис.146. И вновь мы предпочитаем символические обозначения со смешенным затвором, что позволяет идентифицировать исток. Как мы увидим далее, ПТ (как с р-n-переходом, так и МОП-транзисторы) почти симметричны, но обычно они изготавливаются таким образом, чтобы получить емкость между стоком и затвором меньше, чем емкость между истоком и затвором, вследствие чего использовать сток в качестве выходного вывода предпочтительнее. 

Обогащение,   обеднение.    n-канальный МОП-транзистор, с которого мы начали эту главу, не проводил ток при нулевом (или  отрицательном)  смещении  затвора и начинал проводить, когда затвор становился положительно смещен относительно истока. Этот тип ПТ известен как ПТ обогащенного   типа.   Имеется   и   другая возможность изготовления n-канального ПТ, когда полупроводник канала «легирован» так, что даже при нулевом смешении затвора имеется значительная проводимость канала, и на затвор должно быть подано обратное смещение в несколько вольт для отсечки тока стока. Такой ПТ известен как прибор обедненного типа. МОП-транзисторы могут быть изготовлены  любой   разновидности,   поскольку здесь нет ограничения на полярность затвора. Однако ПТ с p-n-переходом допускают  лишь  одну  полярность  смещения затвора, а посему их выпускают только обедненного типа.

График зависимости тока стока от напряжения затвор-исток при фиксированном значении напряжения стока (рис.147) может помочь нам уяснить, в чем состоит это различие. МОП-транзистор обогащенного типа не проводит ток, пока напряжение затвора не станет положительным (имеются в виду n-канальные ПТ) по отношению к истоку, в то время как ток стока МОП-транзистора обедненного типа будет близок к максимальному при напряжении затвора, равном напряжению истока. В некотором смысле такое разбиение на две категории является искусственным, поскольку два графика на рис.147 отличаются только на сдвиг по оси Uзи. Вполне возможно было бы производство «промежуточных» МОП-транзисторов. Тем не менее, эта разница становится существенной, когда дело доходит до проектирования схем.

Заметим, что ПТ с р—n-переходом - это всегда приборы обедненного типа и смещение затвора относительно истока не должно быть больше приблизительно +0,5 В (для n-канала), иначе появится проводимость в диодном переходе затвор-канал. МОП-транзисторы могут быть обогащенными или обедненными, но на практике редко можно встретить последние (исключением являются n-канальные ПТ на GaAs и каскодные пары со «сдвоенным затвором» для радиочастотных применений). Отсюда следует, что во всех практически встречающихся случаях мы имеем дело только с ПТ с p-n-переходом обедненного типа либо с обогащенными МОП-транзисторами; и те и другие могут быть любой полярности, т-е. n-канальными либо p-канальными.

3.03. Общая классификация ПТ

Генеалогическое древо (рис.148) и карта входных, выходных напряжений при заземленном  истоке   (рис.149)   помогают разобраться в ситуации. Различные приборы (включая весь «букет» биполярных nрn- и pnp -транзисторов) нарисованы в квадрантах, характеризующих их входное и выходное напряжение в активной области при заземленном истоке (или эмиттере). При этом вовсе не обязательно запоминать свойства каждого из пяти представленных здесь типов ПТ, поскольку они в основном одинаковы.

Во-первых, при заземленном истоке ПТ включается (переходит в проводящее состояние) путем смещения напряжения затвора в сторону напряжения питания стока. Это верно как для всех пяти типов ПТ, так и для биполярных транзисторов. Например, для n-канального ПТ с р—n-переходом (который автоматически является обедненным) используется положительное напряжение питания стока, как и для всех n-канальных приборов. Таким образом,  этот  ПТ  включается  положительным смещением затвора.

Здесь есть тонкость, состоящая в том, что у приборов обедненного типа для получения нулевого тока стока затвор должен иметь обратное смешение, в то время как у приборов обогащенного типа достаточно для этой цели нулевого напряжения на затворе.

Во-вторых, в связи с примерной симметрией истока и стока любой из этих выводов может работать как исток (исключение    составляют    мощные    МОП-транзисторы, у которых подложка внутри корпуса соединена с истоком). При изучении работы ПТ, а также при расчетах за исток принимается вывод, наиболее «удаленный»   по   напряжению   от   активного питания стока. Например, допустим, что ПТ используется для замыкания на землю некоторой линии, в которой присутствуют как положительные, так и отрицательные сигналы. Обычно такая линия подключается к стоку ПТ. Если в качестве ключа  взят  n-канальный  МОП-транзистор обогащенного типа и если случится, что в выключенном состоянии напряжение на стоковом выводе будет  отрицательным, то для подсчета отпирающего напряжения затвора этот вывод следует считать   в   действительности   «истоком». Это означает, что для обеспечения надежного запирания ключа отрицательное напряжение   на   затворе  должно   быть   не только уровня «земли», но и превышать (по   абсолютной   величине)   наибольший отрицательный сигнал.

Характеристики, приведенные на рис.150, помогут вам разобраться в этих запутанных вопросах. Еще раз отметим, что разница между обогащенными и обедненными приборами выражается только в сдвиге вдоль оси Uзи, т.е. имеется ли большой ток стока или нет совсем никакого тока при напряжении затвора равном напряжению истока. Полевые n-канальные и p-канальные транзисторы симметричны друг другу в том же смысле, в каком являются таковыми биполярные n—р—n - и р-n-р- транзисторы.  

На рис.150 мы использовали стандартные обозначения для таких важных параметров ПТ, как ток насыщения и напряжение отсечки. Для ПТ с р-n-переходом величина тока стока при замкнутых накоротко затворе и истоке обозначается в спецификациях как Iси.нач; она близка к величине максимально допустимого тока стока, (Iси.нач означает ток от стока к истоку при короткозамкнутых затворе и истоке). Здесь и далее в этой главе мы приводим эту нотацию, в которой первые две буквы индекса обозначают соответствующие выводы, а за ними указывается состояние.) Для обогащенных МОП-транзисторов аналогичной спецификацией является Iси.вкл при некотором заданном напряжении прямого смещения затвора (Iси.нач у любого прибора с обогащением был бы равен нулю).

Для ПТ с р-n- переходом напряжение затвор - исток, при котором ток стока становится равен нулю, называется «напряжением отсечки» (Uотс) или «напряжением выключения» (Uзи.выкл) и типичное его значение лежит в диапазоне от —3 до —10 В (для p-канального прибора оно,. разумеется, положительное). Для обогащенного МОП-транзистора аналогичная величина называется «пороговое напряжение», Uп (или Uзипор) это напряжение перехода затвор - исток, при котором начинает  проходить  ток  стока.  Типичная величина Uп составляет 0,5-5 В, разумеется в «прямом» направлении.

Имея дело с ПТ легко запутаться в полярностях. Например, n-канальное устройство, у которого обычно сток положителен по отношению к истоку, может иметь положительное или отрицательное напряжение на затворе, а также положительное (обогащенный тип) или отрицательное (обедненный тип) пороговое напряжение. Еще более усложняет дело то, что сток может быть (и часто бывает) отрицателен по отношению к истоку. Все эти рассуждения, конечно, справедливы с заменой знаков для р-канальных устройств. В дальнейшем, чтобы свести к минимуму ошибки, мы будем всегда иметь в виду n-канальные устройства, если не оговорено противное. Аналогичным образом, поскольку МОП-транзисторы почти всегда обогащенные, а ПТ с р — n- переходом всегда обедненного типа, мы будем далее опускать эти их определения.

3.04. Выходные характеристики ПТ

На рис.141 мы показывали семейство кривых зависимости Iс от Uси, измеренных для n-канального обогащенного МОП-транзистора (реального прибора). Мы уже отмечали, что ПТ ведут себя как хорошие преобразователи проводимости (т.е. Iс почти не изменяется при заданном Uзи) практически во всем диапазоне изменения Uси, за исключением его малых значений, где они проявляют себя как сопротивление (т.е. Iс пропорционален Uси). В обоих случаях приложенное к переходу затвор-исток напряжение управляет поведением ПТ, которое хорошо можно описать аналогом уравнения Эберса-Молла для  ПТ.  Посмотрим на эти две области более подробно.

На рис.151 схематически представлена указанная ситуация. В обеих областях ток стока зависит от Uзи - Uп, величины, на которую напряжение затвор-исток превышает пороговое напряжение (или напряжение отсечки). Линейная область, в которой ток стока приблизительно пропорционален Uзи, простирается до напряжения Uзи.нас, после чего ток стока почти не изменяется. Крутизна наклона линейного участка Iс/Uси пропорциональна напряжению смещения. Uзи - Uп. Далее, напряжение стока Uси.нас, при котором кривая «выходит на насыщение», равно UзиUп, в результате чего ток насыщения, Iс.нас становится пропорционален (Uзи-Uп)2 -квадратичный закон, о котором мы упоминали ранее. Итак, имеем универсальные формулы для определения тока стока ПТ:

Ic = 2к[( Uси - Uп) Uси - О,5U2си] (линейный участок),

Iс = к(UзиUп)2     (участок насыщения).

Если мы назовем Uзи - Uп (величину, на которую напряжение затвор-исток превышает порог) «напряжением возбуждения затвора», то можно сформулировать три важных результата из сказанного:

а) удельное сопротивление ПТ в линейной области обратно пропорционально напряжению   возбуждения,   

б) линейный участок простирается вплоть до напряжения, равного напряжению возбуждения и

в) ток насыщения стока пропорционален напряжению возбуждения в квадрате. Приведенные выражения предполагают, что подложка соединена с истоком. Обратите внимание на то, что «линейный участок» не является строго линейным, поскольку формула содержит нелинейный член U2си, позже мы покажем остроумную схему, фиксирующую эту составляющую.

Масштабный коэффициент к зависит от таких параметров, как геометрия ПТ, емкость слоя окисла и подвижность носителей. У этой постоянной отрицательный температурный коэффициент:

к~Т-3/2 .

Этот эффект сам по себе приводил бы к уменьшению Iс с увеличением температуры. Однако это компенсируется тем, что Uп также в слабой степени зависит от температуры с коэффициентом 2-5 мВ/°С; суммарный эффект дает зависимость тока стока от температуры, показанную на рис.152.

При больших токах стока убывание коэффициента к с ростом температуры влечет уменьшение тока стока - настоящее тепловое бегство! Как следствие этого, ПТ какого-нибудь одного типа могут быть соединены параллельно без токовыравнивающих резисторов, в отличие от биполярных транзисторов, где «резисторный балласт» в цепях эмиттеров необходим. Этот же отрицательный температурный коэффициент предотвращает также тепловую гонку на локальном участке перехода (эффект, известный под названием «прогиб тока»), которая серьезно ограничивает допустимую мощность рассеяния больших биполярных транзисторов.

При малых токах стока (когда доминирует температурная зависимость Uп) Ic растет с ростом температуры и точка перехода от возрастания к убыванию находится при некотором промежуточном значении тока стока. Этот эффект используется в операционных усилителях на ПТ для минимизации температурного дрейфа.

Субпороговая область. Приведенное выше   выражение   для   тока   насыщения стока непригодно для очень малых значений тока стока. Этот диапазон известен как «субпороговая» область, где канал находится ниже порога проводимости, однако некоторый ток все-таки проходит за счет небольшой вероятностной популяции электронов с большим тепловым возбуждением. Если вы изучали физику или химию, то, возможно, знаете из того, что проходили, что результирующий ток имеет экспоненциальную зависимость:

Ic = k exp(Uзи- Uп).

На (рис.153) показаны результаты промеров параметров нескольких приборов.

3.05. Производственный разброс характеристик ПТ

Перед тем как рассматривать какие-нибудь схемы, оценим сначала диапазон параметров ПТ (таким как Iси.нач и Uп), а также их «разброс» среди приборов одного типа с целью получения более полного представления о ПТ. К сожалению, многие характеристики ПТ имеют разброс намного больше, чем соответствующие характеристики биполярных транзисторов, -факт, который проектировщик должен помнить. Например, в паспорте на V7V01 (типичный n-канальный МОП-транзистор) оговорено, что Uп может составлять от 0,8 до 2.4 В (при Iс = 1 мА), в сравнении с тем, что аналогичный параметр биполярного nрn-транзистора,   Uбэ имеет разброс от 0.63 до 0.83 В (также при Iк — 1 мА). Итак, вот что мы можем ожидать:

Характеристика

Диапозон

номинальных

значений

IСИ нач, IС вкл

от 1 мА до 1 А

RСИ вкл

0,05 Ом-10кОм

gm при 1 мА

500-3000мкс

Uост (p-n-ПТ)

0,5-10 В

UП (МОП)

0,5-5 В

UСИ пр

6-1000 В

UЗИ пр

6-125 В

В этой таблице Rси.вкл - сопротивление сток-исток (линейная область, т.е. малое напряжение Uзи). Для полностью открытого ПТ, т. е. при заземленном затворе в случае ПТ с р-n- переходом или при большом (обычно принимается 10 В) напряжении затвор-исток у МОП-транзистора. Icи.нач и Iс.вкл - значения тока стока в области насыщения (большое Ucи) при тех же самых отпирающих условиях возбуждения затвора. Uoтc - есть напряжение отсечки (ПТ с р-n-переходом), Uп - пороговое напряжение затвора (МОП-транзисторы), a Uси.пp и Uзипр- соответствующие напряжения пробоя. Как можно видеть, ПТ с заземленным истоком может быть хорошим источником тока, но нельзя точно предсказать, каким будет этот ток. Напряжение Uзи, при котором получается заданный ток стока, может заметно варьировать в отличие от предсказуемого (~ 0,6 В) Uбэ у биполярных транзисторов.

Согласование характеристик. Как вы можете видеть, ПТ уступают биполярным транзисторам в предсказуемости Uзи, т. е. значения Uзи, обеспечивающие заданный Iс имеют большой разброс. Приборы, обладающие большим разбросом, будут, вообще говоря, давать больший сдвиг (напряжение небаланса), если их применять в качестве дифференциальных пар. Например, типичный серийный биполярный транзистор дает разброс Uбэ в 50 мВ или около того при некотором заданном токе коллектора без всякого отбора транзисторов (берем подряд любой прибор, имеющийся под рукой). Соответствующая цифра для МОП-транзисторов - более 1В! Но поскольку ПТ обладают весьма желательными характеристиками имеет смысл затратить некоторые дополнительные усилия для уменьшения сдвига путем изготовления согласованных пар.

Проектировщики ИС пользуются такими приемами как перемежающаяся (гребенчатая) структура (два прибора разделяют между собой один и тот же участок подложки ИС) и выравнивание температурных градиентов в схеме между приборами (рис.154). 

Получаемые результаты впечатляют. Хотя ПТ не могут сравняться с биполярными транзисторами в согласованности Uзи, их параметры вполне пригодны для большинства применений. Например, наилучшим образом согласованная пара ПТ имеет сдвиг 0.5 мВ и температурный коэффициент 5 мкВ/ 0С (макс), в то время как у лучшей биполярной пары эти значения будут 25 мкВ и 0.6 мкВ/ 0С. грубо говоря, в 10 раз лучше. Операционные усилители (универсальные дифференциальные усилители с высоким коэффициентом усиления, о которых мы будем говорить в следующей главе) выпускаются как на полевых, так и на биполярных транзисторах, для высокоточных применений вы сможете, вообше говоря, выбрать ОУ с биполярной «начинкой» (ввиду тесного согласования входных транзисторов по Uбэ). В то время, как ОУ с ПТ-входом, очевидно, является наилучшим выбором для высокоомных схем (их входы - затворы ПТ- не потребляют тока). Например, недорогой ОУ типа LF411 со входом на ПТ с p-n-переходом, который мы используем повсеместно в схемах, приводимых в следующей главе, имеет типичное значение входного тока 50 пА и стоит 60 центов; популярный TLC212 со входом на МОП-транзисторах стоит примерно столько же и имеет типичное значение входного тока всего 1 пА! Для сравнения укажем, что обычный биполярный ОУ имеет типичное значение входного тока 80 000 пА (80 нА).

ОСНОВНЫЕ СХЕМЫ НА ПТ

Теперь мы готовы к тому, чтобы рассмотреть схемы на ПТ. Обычно можно найти способ преобразовать схему на биполярных транзисторах в схему с использованием ПТ. Однако эта новая схема может не дать улучшения характеристик! В оставшейся части этой главы мы постараемся показать схемные решения, в которых проявляются преимущества уникальных свойств ПТ, т. е. схемы, которые работают лучше, будучи построены на ПТ, или которые совсем нельзя изготовить на биполярных транзисторах. С этой целью может оказаться полезным сгруппировать схемы на ПТ по категориям; здесь особенно важным является, как мы это видим.

Схемы с высоким полным сопротивлением (слаботочные). Сюда относятся буферные или обычные усилители для тех применений, где ток базы или конечное полное входное сопротивление биполярных транзисторов ограничивает их характеристики. Хотя мы можем построить такие схемы на отдельно взятых ПТ, однако сегодняшняя практика отдает предпочтение использованию интегральных схем, построенных на ПТ. В некоторых из них ПТ используется только в качестве высокоомного входного каскада, а вся остальная схема построена на биполярных транзисторах, в других вся схема построена на ПТ.

Аналоговые ключи. МОП-транзисторы являются превосходными аналоговыми ключами,   управляемыми   напряжением. Мы еще обсудим вкратце данный предмет и снова говоря «аналоговый ключ», мы должны в общем случае иметь в виду интегральные микросхемы, а не схемы, построенные на дискретных элементах

Цифровая логика. МОП-транзисторы доминируют при построении микропроцессоров, схем памяти и большинства высококачественных цифровых логических схем. Микромощные логические схемы изготавливаются исключительно на МОП-транзисторах. Здесь, как и прежде, МОП-транзисторы используются в составе интегральных схем. Далее мы увидим, почему ПТ отдается предпочтение перед биполярными транзисторами.

Мощные переключатели. Мощные МОП-транзисторы часто бывают предпочтительнее биполярных транзисторов для переключения нагрузок, как мы уже показали в нашей первой схеме, приведенной в данной главе. Для таких применений   используются   мощные   дискретные ПТ.

Переменные резисторы; источники тока. В «линейной» области стоковых характеристик ПТ ведут себя подобно резисторам, управляемым напряжением; в области «насыщения» они являются управляемыми напряжением источниками тока. Вы можете использовать эти присущие ПТ свойства в своих схемах.

Общая замена биполярных транзисторов. Вы можете использовать ПТ в генераторах, усилителях, стабилизаторах напряжения, радиоприемных схемах (по крайней мере в некоторых из них), -там, где обычно используются биполярные транзисторы. Применение ПТ не гарантирует улучшения схемы- иногда такая замена желательна, иногда нет. Их следует просто иметь в виду как возможную альтернативу.

Давайте теперь посмотрим на указанные области применения. Для лучшего понимания мы слегка изменим порядок изложения.

3.06. Источники тока на ПТ с р-n- переходом

ПТ используется в качестве источников тока в составе интегральных схем (в частности, в ОУ), а также иногда и в схемах на дискретных элементах. Простейший источник тока на ПТ показан на рис.155:

Мы выбрали ПТ с р-n-переходом, а не МОП-транзистор, поскольку ему не требуется смещения затвора (режим с обеднением). Из стоковых характеристик ПТ (рис.156) видно, что ток будет приблизительно постоянным при Uси больше 2 В. Однако в силу разброса Ic.нач величина этого тока непредсказуема. Например, устройство 2N5484 (типичный n-канальный транзистор с р- n-переходом) имеет паспортную величину Ic.нач от 1 до 5 мА. И все же эта схема привлекает своей простотой двухвыводного устройства, дающего постоянный ток. Существуют дешевые серийные «диодные стабилизаторы тока», представляющие собой всего лишь отобранные по току ПТ с р-n -переходом, у которых затвор соединен со стоком. Это токовые аналоги стабилитронов (стабилизаторов напряжения). Приведем  характеристики   таких  приборов из серии 1N5283-1N5314:

Номинальный ток стабилизации    от 0,22 до 4,7 мА  +/-  10%

Температурный коэффициент         ± 0,4% 0С

Диапазон напряжений                      1- 2,5 В мин., 100 В макс.

Стабильность тока                            5% тип.

Динамическое (дифференциальное) 1 Мом (тип.) для сопротивление устройств с током 1 мА.

Мы построили график вольт-амперной характеристики устройства 1N5294, имеющего номинальный ток стабилизации 0.75 мА: рис.157, а демонстрирует хорошее постоянство тока вплоть до напряжения пробоя (140 В для данного конкретного образца), тогда как из рис.157.б видно, что полный ток данного устройства достигается при падении напряжения на нем несколько меньше 1.5 В. Позднее мы покажем, как можно использовать такого рода устройство для создания генератора пилообразного напряжения с острыми вершинами сигнала.

Источник тока с автоматическим смещением. Вариация предыдущей схемы дает регулируемый источник тока (рис.158). Резистор автоматического смещения R задает обратное смещение затвора IсR, уменьшая Ic и приводя ПТ с р-n- переходом в состояние, близкое к отсечке. Можно рассчитать значение R по выходным характеристикам для конкретного ПТ. Эта схема не только дает возможность устанавливать ток (который должен быть меньше Ic.нач), но и сделать это более предсказуемым образом. Кроме того, эта схема является лучшим источником тока (с более высоким динамическим сопротивлением) в силу того, что истоковый резистор обеспечивает обратную связь по току, а также потому, что характеристики ПТ с п-n- переходом как источника тока при обратном смещении затвора всегда улучшаются, как это видно из приведенных на рис.141 и 156 характеристик, где чем ниже кривая зависимости Iс от Uзи, тем она ближе к горизонтали. Однако, конечно, надо помнить, что значение Iс, полученное при каком-то значении Uзи для данного конкретного ПТ, может отличаться от взятого из характеристики на значительную величину ввиду технологического разброса. Если надо получить строго заданный ток, то можно использовать в цепи истока подстроечный резистор.

Источник тока на ПТ с р-n-переходом, даже с резистором в цепи истока, дает несколько изменяющийся ток при изменении напряжения, т. е. он имеет конечное выходное сопротивление, а не желаемое бесконечное значение Zвыx. Кривые рис.156 показывают, например, что у транзистора 2N5484 при изменении напряжения стока в рабочем диапазоне от 5 до 20 В ток стока при замкнутых накоротко истоке и затворе (т.е. Iс.нач) изменяется на 5%. Эту вариацию можно уменьшить до 2% или около того, включив в цепь истока резистор. Тот же прием, который был использован в схеме рис.83, можно использовать и для источников тока на ПТ с р-n-переходом, как это и сделано на рис.159. Идея (как и в случае с биполярными транзисторами) состоит в том, чтобы использовать второй ПТ с р- n-переходом для поддержания постоянным напряжения сток-исток в источнике тока. Т1, в этом случае является обычным источником тока на ПТ с p-n-переходом с истоковым резистором.

Т2 - ПТ с р - n-переходом с большим значением Ic.нач , включенный «последовательно» с источником тока. Он пропускает постоянный ток стока T1 в нагрузку, удерживая в то же время напряжение на стоке T1 неизменным, а тем самым и напряжение затвор-исток, что вынуждает Т2 работать с тем же током, что и T1. Таким образом, Т2 «экранирует» Т1 от колебаний напряжения на выходе; поскольку T1 не подвержен вариациям напряжения стока, он «сидит на месте» и обеспечивает постоянный ток. Если вернуться к схеме зеркала Вилсона (рис.114), то мы увидим, что здесь используется та же идея фиксации напряжения.

Вы можете распознать в этой схеме на ПТ с p-n-переходом «каскодную» схему, которая обычно используется для преодоления эффекта Миллера. Каскодная схема на ПТ с р-n-переходом проще, чем на биполярных транзисторах, поскольку здесь не требуется напряжения смешения на затворе верхнего ПТ ввиду того, что он работает в режиме с обеднением, можно просто заземлить его затвор (сравните с рис.137).

мочь в этом может рассмотрение каскодной схемы на ПТ с р   «-переходом без ис токового резистора.

Важно осознавать, что источник тока на хороших биполярных транзисторах обеспечит намного лучшие предсказуемость и стабильность, чем источник тока на ПТ с р—«-переходом. Более того, построенные на ОУ источники тока, которые мы увидим в следующей главе, еще лучше. Например, источник тока на ПТ в типичном диапазоне температур и вариаций напряжения нагрузки может давать ток с отклонениями на 5%, даже если подгонкой истокового резистора установить желаемый ток; в то же время источник тока на ОУ из биполярных или полевых транзисторов даст без особых усилий со стороны разработчика предсказуемость и стабильность лучше 0,5%.

3.07. Усилители на ПТ

Истоковые повторители и усилители на ПТ с общим истоком- это аналоги эмиттерных повторителей и усилителей с общим эмиттером на биполярных транзисторах. Однако отсутствие постоянного тока затвора дает возможность получить очень высокое входное сопротивление. Такие усилители необходимы, когда мы имеем дело с высокоомными источниками сигналов, встречающимися в измерительных схемах. Для некоторых специализированных применений вы, может быть, захотите построить повторители или усилители на дискретных ПТ, однако в большинстве случаев можно использовать достоинства, которыми обладают ОУ с ПТ- входом. В любом случае стоит понять, как они работают.

Когда мы имеем дело с ПТ, то обычно применяется та же схема автоматического смещения, что и в источниках тока на ПТ с р-n-переходом  с одним резистором смещения затвора, подключенным вторым выводом к земле (рис.160): для МОП-транзисторов требуется делитель, питаемый от источника напряжения стока, или расщепленный источник, как это было и в случае с биполярными транзисторами.   Резистор  смещения  затвораможет иметь очень большое сопротивление (свыше МОм), поскольку ток утечки затвора измеряется наноамперами.

Крутизна. Отсутствие тока затвора делает естественным параметром, характеризующим усиление ПТ, крутизну-отношение выходного тока к входному напряжению: gm=iвых/uвх.

Это отличается от того, как мы рассматривали биполярные транзисторы в предыдущей главе, где мы вначале носились с идеей усиления по току (iвых/iвх), а затем ввели ориентированную на параметр крутизны модель Эберса - Молла: полезно было посмотреть на биполярные транзисторы с разных сторон, в зависимости от их применения.

Крутизна ПТ может быть оценена по характеристике либо по тому, насколько увеличивается Iс при переходе от одной кривой с фиксированным значением напряжения затвора к другой из семейства кривых (рис.141 или 156), либо, что проще, по наклону кривых «передаточных характеристик» Iс-Uзи (Рис 153). Крутизна зависит от тока стока (вскоре мы увидим как) и определяется просто как  gm(Ic)=ic/uзи

(Напомним, что строчными латинскими буквами обозначаются малосигнальные приращения.) Из этого выражения мы получаем коэффициент усиления по напряжению:

Ки =uс/uзu = - RcIc/u зи = - gм Rc,

тот же результат, что и для биполярного транзистора, если заменить резистор нагрузки Rк на Rc. Как правило, крутизна ПТ равняется нескольким тысячам микросименс (мкСм) при токе стока в несколько миллиампер. Поскольку gм зависит от тока стока, существует некоторая нелинейность, связанная с зависимостью коэффициента усиления от изменения тока стока на протяжении периода сигнала, подобно тому, как это бывает в усилителе с заземленным эмиттером, где gм = 1/rэ пропорциональна Ic. Кроме того, ПТ в общем имеют значительно меньшую крутизну, чем биполярные транзисторы, что делает их менее подходящими для построения усилителей и повторителей. Рассмотрим это немного подробнее.

Сравнение крутизны ПТ и биполярных транзисторов. Чтобы перевести наше последнее замечание в числа, рассмотрим ПТ с р-n-переходом и биполярный транзистор, каждый с рабочим током 1 мА. Представим, что они включены как усилители с общим истоком (эмиттером), а сток (коллектор) через резистор 5 кОм подключен к источнику питания   +10 В (рис.161). Не будем обращать внимания на детали смещения и сосредоточимся на рассмотрении коэффициента усиления. Биполярный транзистор имеет rэ, равное 25 Ом, а следовательно, gм= 40 мСм и коэффициент усиления по напряжению — 200 (что можно получить прямым расчетом как -Rк/rэ). Типичный ПТ с р-n-переходом (например, 2N4220) имеет gм порядка 2 мСм при токе стока 1 мА, давая коэффициент усиления по напряжению порядка —10. Это сравнение выглядит обескураживающим. Малая gм дает также относительно высокое Zвыx в схеме повторителя (рис.162): ПТ с р-n-переходом имеет Zвыx=1/gм, что в данном случае эквивалентно 500 Ом (независимо от сопротивления источника сигнала); в сравнении с этим биполярный транзистор имеет Zвых = Rc/h2lэ + гэ = Rс/h21э+1/gм, равное Rс/h2lэ +25 Ом (при 1 мА). Для типичного бета-биполярного транзистора, скажем h21э = 100, и при разумных значениях сопротивления источника сигнала, скажем при Rc < 5 кОм, биполярный повторитель на порядок лучше (Zвых равно 25-75 Ом). Отметим, однако, что при Rc > 50 кОм повторитель на ПТ с р—n-переходом будет лучше. 

Чтобы видеть, что происходит, вернемся к выражениям зависимости тока стока ПТ от напряжения затвор-исток и сравним с эквивалентным уравнением (Эберса-Молла) зависимости тока коллектора биполярного транзистора от напряжения база-эмиттер.

Биполярный транзистор (уравнение Эберса - Молла):

Iк = Iс[ехр(Uбэ/Uт)- 1].

где Uт = кТ/q = 25 мВ, что дает gm = dIк/dUбэ=Iк/Uт для коллекторного тока, большого в сравнении с током «утечки» Iс. Это уже знакомый нам результат - rэ(Ом) = 25/Iк(мА), поскольку gm = 1/rэ. Полевой транзистор: в «субпороговой» области он имеет очень малый ток стока

Ic~exp(Uзи),

что, будучи экспоненциальным подобием уравнения Эберса - Молла, также дает пропорциональную зависимость крутизны от тока.

Однако для наблюдающихся в реальности значений к (который зависит от геометрии ПТ, подвижности носителей и т. п.) крутизна ПТ несколько ниже, чем у биполярного транзистора, - около 1/40 мВ для р-канального МОП-транзистора и около 1/60 мВ для n-канального МОП-транзистора, тогда как у биполярных транзисторов она равна 7/25 мВ. По мере увеличения тока ПТ входит в нормальную область «насыщения», где Ic= k(Uзи-Uт)2, что дает gm= 2(klc)1/2 . Это означает, что крутизна растет пропорционально лишь корню квадратному из Iс и становится намного меньше крутизны биполярного транзистора при тех же значениях рабочего тока (см. рис.163). Увеличение постоянной к в предыдущих уравнениях (за счет увеличения отношения ширины канала к его длине) увеличивает крутизну и ток стока при данном значении Uзи) в надпороговой области, но все равно крутизна остается меньше, чем у биполярного транзистора при том же токе.

Проблему низкого коэффициента усиления в усилителях на ПТ можно разрешить, обратившись к нагрузке в виде источника тока (активной), однако вновь биполярный транзистор будет лучше в той же схеме. По этой причине редко можно видеть ПТ в схемах простых усилителей, если только не нужно использовать их уникальные входные параметры (исключительно высокое входное сопротивление и малый входной ток).

Обратите внимание на то, что крутизна ПТ в области насыщения пропорциональна Uзи - Uт; так, например, ПТ с р - n- переходом, на затвор которого подано напряжение, равное половине напряжения отсечки, имеет крутизну примерно вполовину меньше, чем приведенная в паспорте (где она всегда дается при Iс = Iс.нач , т.е. при Uзи = 0).

Дифференциальные усилители. Можно использовать согласованные пары ПТ для построения входных каскадов с высоким полным входным сопротивлением биполярных дифференциальных усилителей, а также играющих важную роль ОУ и компараторов, которые мы встретим в следующих главах. Как отмечалось выше, значительный разброс Uзи у ПТ приведет, вообще говоря, к большим значениям входного напряжения сдвига и его дрейфа, чем у аналогичного усилителя, построенного исключительно на биполярных транзисторах; зато входное полное сопротивление колоссально возрастет.

Генераторы. Вообще говоря, ПТ по своим характеристикам могут быть хорошей заменой биполярных транзисторов почти в любой схеме, которая выигрывает благодаря их уникально высокому полному входному сопротивлению и малому входному току смещения. Примерами таких схем являются высокостабильные LC-генераторы и кварцевые генераторы.

13.11. Активная нагрузка. 

Так же как и для усилителей на биполярных транзисторах, в усилителе на ПТ можно заменить резистор нагрузки стока активной нагрузкой, т.е. источником тока. При этом можно получить очень большой коэффициент усиления по напряжению:

Ku=-gmRc (резистор нагрузки стока),

Ku= -gmR0 (источник тока).

где R0 — полное сопротивление в цепи стока, обычно лежащее в диапазоне значений от 100 кОм до 1 МОм.

Одним из вариантов активной нагрузки является токовое зеркало, включенное в качестве нагрузки стока в дифференциальном каскаде на ПТ; эта схема, однако, не обеспечивает стабильного смещения, если не охватить ее общей цепью обратной связи. Токовое зеркало можно построить как на ПТ, так и на биполярных транзисторах. Часто это схемное решение применяется в ОУ на ПТ, которые мы увидим позднее. Другой прекрасный пример применения метода активной нагрузки вы увидите, когда мы будем рассматривать линейный усилитель на КМОП-транзисторах.

3.08. Истоковые повторители

Ввиду относительно малой крутизны ПТ часто предпочитают использовать построенный на ПТ «истоковый повторитель» (являющийся аналогом эмиттерного повторителя) в качестве входного буферного каскада для усилителя на обычных биполярных транзисторах, вместо того, чтобы пытаться прямо изготовить усилитель на ПТ с общим истоком. При этом сохраняются высокое входное сопротивление и нулевой постоянный входной ток ПТ, а большая крутизна биполярного транзистора позволяет получить большой коэффициент усиления в одном каскаде. Кроме того, у дискретных ПТ (т.е. не являющихся частью интегральной схемы) межэлектродные емкости выше, чем у биполярных транзисторов, вследствие чего в усилителях с общим истоком более сильно проявляется эффект Миллера; в схеме истокового повторителя, как и в эмиттерном повторителе, эффект Миллера отсутствует.

Повторители на ПТ с их высоким полным входным сопротивлением обычно применяются как входные каскады в осциллографах и других измерительных приборах. Во многих случаях высокое полное сопротивление бывает неотъемлемой особенностью источника сигнала, как, например, у конденсаторных микрофонов, рН-метров, детекторов заряженных частиц или микроэлектродов для снятия сигналов с живых объектов в биологии и медицине; во всех этих случаях полезен входной каскад на ПТ (дискретных или в составе интегральной схемы). В схемотехнике встречаются случаи, когда и последующий каскад должен иметь малый входной ток или вообще его не иметь. Примеры тому - схемы «слежения и хранения» и пиковые детекторы, в которых конденсатор, запоминающий уровень напряжения, «сбросится», если вход последующего усилителя проводит слишком большой ток. Во всех этих случаях пренебрежимо малый входной ток ПТ является более важной характеристикой, чем его малая крутизна, что делает истоковый повторитель (или даже усилитель с общим истоком) весьма выгодной заменой эмиттерного повторителя на биполярных транзисторах.

На рис.164 показан простейший истоковый повторитель. Мы можем выразить амплитуду выходного сигнала, как делали это для эмиттерного повторителя через крутизну. Имеем: uи = Rи ic, так как iз пренебрежимо мал; при этом, поскольку iс = gm* uзи = gт(uз - ии), то uи= [Rн*gm/(1+Rн*gm)]uз При Rн>>l/gm мы имеем хороший повторитель (uи = uз) с коэффициентом усиления, близким к единице, хотя всегда меньше единицы.

Выходное сопротивление. Предыдущую формулу для uи можно было бы считать не приближенным, а точным выражением, если бы выходное сопротивление истокового повторителя было равно 1/gm, (попробуйте произвести соответствующие расчеты, рассматривая напряжение источника как источник, который будучи включен последовательно с 1/gm, работает на нагрузку Rн). Это точный аналог ситуации с эмиттерным повторителем, у которого выходное полное сопротивление равно гэ = 25/Iк или 1/gm. Легко показать, что истоковый повторитель имеет полное выходное сопротивление 1/gm, определив ток истока при сигнале, приложенном к выходу при заземленном затворе (рис.165). Ток стока в этом случае равен

iс = gm*uзи = gm*u, a rвых=u/iс=1/gm. Обычно rвых составляет несколько сот ом при токах в несколько миллиампер. Как легко видеть, истоковые повторители не столь совершенны, как эмиттерные повторители.

У данной схемы два недостатка:

1. Относительно большое выходное полное сопротивление означает, что амплитуда выходного сигнала может быть значительно меньше, чем амплитуда входного, даже при высоком полном сопротивлении нагрузки, так как любое Rн образует в сочетании с выходным сопротивлением истока делитель. Кроме того, так как ток стока меняется на протяжении периода  сигнала,  поэтому gm  и  вместе с   ней   выходное   полное   сопротивление будут изменяться, внося в выходной сигнал некоторую нелинейность (искажения). Эту ситуацию можно улучшить, используя ПТ с большой крутизной, но лучшим решением является    комбинированный (ПТ-биполярный  транзистор)   повторитель.

2. Так как величина Uзи, необходимая для задания определенного рабочего тока, -трудно контролируемый при изготовлении параметр, то истоковый повторитель имеет непредсказуемое смещение по постоянному току-серьезный минус при использовании в схемах со связями по постоянному току.

Активная нагрузка. Путем добавления нескольких элементов истоковый повторитель может быть очень сильно улучшен. Рассмотрим это поэтапно.

Во-первых, заменим Rн источником тока (отбирающим ток, рис.166). Постоянный ток истока стабилизирует напряжение Uзи, а это устраняет нелинейности. Для простоты можно считать, что значение Rн становится бесконечным - эффект, создаваемый источником тока в качестве нагрузки.

Схема на рис.166,б имеет еще одно преимущество в виде малого выходного сопротивления при сохранении приближенного постоянства тока истока Uбэ/Rсм. По- прежнему, правда, существует проблема непредсказуемого (а потому ненулевого) напряжения смещения от входа к выходу Uзи (для схемы 166,б - Uзи + Uбэ). Можно было бы, конечно, просто отрегулировать Iсм к значению Iс.нач для конкретного ПТ в схеме 166, а или отрегулировать также Rсм на схеме 166, б. Но это решение плохо по двум причинам: а) требуется индивидуальная регулировка для каждого ПТ; б) даже и при этом Iс может сильно меняться (почти двукратно) при изменении температуры в рабочем диапазоне при данном Uзи.

В более качественных схемах применяются согласованные пары ПТ с нулевым смещением (рис.167). Т1 и Т2 -это согласованная пара на отдельном кремниевом кристалле. Т2 отбирает ток точно отвечающий условию Uзи=0, поэтому, так как для обоих ПТ Uзи = 0, T1 есть повторитель с нулевым смещением. Так как оба ПТ находятся в одних и тех же температурных условиях, смешение остается почти нулевым при любой температуре.

Обычно в предыдущей схеме добавляют небольшие истоковые резисторы (рис.168). Если чуть подумать, то будет ясно, что резистор R1 необходим, а равенство Rl = R2 гарантирует, что Uвых = Uвх, если T1 и Т2 согласованы. Эта модификация схемы улучшает предсказуемость Iс, позволяет установить значение тока стока, отличное от Iс.нач и улучшает линейность, поскольку ПТ как источник тока работает лучше при значениях рабочего тока, меньших Iс.нач. Такой повторитель широко применяется в качестве входного каскада усилителя вертикального отклонения осциллографа.

Чтобы «выжать» из схемы все возможное, можно добавить в нее цепь следящей обратной связи со стока (чтобы скомпенсировать входную емкость) и выходной каскад на биполярном транзисторе для получения низкого полного выходного сопротивления. Тот же выходной сигнал можно затем использовать для запитки внутреннего «защитного» экрана, эффективно понижающего влияние емкости экранированного кабеля, которая в противном случае катастрофически ухудшила бы параметры схемы с высоким сопротивлением источника сигналов и свела бы на нет большое полное входное сопротивление, свойственное буферному усилителю.

3.09. Ток затвора ПТ

Мы уже говорили вначале, что ПТ вообще и МОП-транзисторы в особенности имеют практически нулевой ток затвора. Это, возможно, наиболее важное свойство ПТ и оно использовалось в описанных в предыдущем разделе высокоомных усилителях и повторителях. Существенным оно будет и в тех применениях, о которых речь впереди - самые существенные из них аналоговые ключи и цифровые логические схемы.

Разумеется, при пристальном рассмотрении мы увидим, что какой-то ток через затвор все же течет. Это важно знать, поскольку наивная модель с нулевым током гарантирует, что раньше или позже, но вы ошибетесь. Фактически к возникновению конечного (ненулевого) тока затвора приводит ряд механизмов. Даже у  МОП-транзисторов  изоляция  затвора (двуокись   кремния)   несовершенна,   что приводит к токам утечки, находящимся в   пикоамперном   диапазоне.   У   ПТ   с р-n-переходом «изоляция» затвора на самом  деле  является   обратносмещенным диодным  переходом  и  механизмы тока утечки через него те же, что и у обычного диода. Кроме того, ПТ с р-n-переходом (n-канальные в особенности) подвержены дополнительному    эффекту,    известному как ток «ударной ионизации» затвора; он может достигать астрономических уровней. И наконец, как ПТ с p-n-переходом, так  и   МОП-транзисторы   имеют  динамический ток затвора, возникающий при воздействии сигналов переменного тока на емкость затвора: это может вызвать эффект Миллера, совсем как у биполярных транзисторов.

В большинстве случаев входной ток затвора пренебрежимо мал в сравнении с током базы биполярного транзистора. Есть, однако, ситуации, когда ПТ может фактически иметь более высокий входной ток! Рассмотрим ряд из них.

Утечка затвора. Полное входное напряжение усилителя (или повторителя) на ПТ на низких частотах ограничено утечкой затвора. В паспорте ПТ обычно указывается напряжение пробоя Uз.макс, определяемое как напряжение между затвором и каналом (исток и сток закорочены), при котором  ток  затвора  достигает   1 мкА. При меньших напряжениях затвор-канал ток утечки затвора Iз.ут, опять-таки при соединенных накоротко истоке и стоке, значительно меньше, и этот ток быстро падает    до    пикоамперного    диапазона, когда  напряжение  затвор-сток  существенно   меньше   напряжения   пробоя.   У МОП-транзисторов   никогда   нельзя  допускать пробоя изоляции затвора; в данном случае утечка затвора определяется как некоторый максимальный ток утечки при определенном заданном в спецификации напряжении затвор-канал. В интегральных усилительных схемах на ПТ (например, в ОУ на ПТ) для спецификации входного   тока   утечки   применяется   не дающий   правильного   представления по сути дела «входной ток смешения» Iсм; обычно его величина лежит в пикоамперном диапазоне.

Хорошо здесь то, что ток утечки находится в пикоамперном диапазоне при комнатной температуре. Плохо, что он быстро нарастает (фактически экспоненциально) с ростом температуры, грубо говоря удваивается на каждые 10°С. В противоположность этому ток утечки базы у биполярного транзистора практически отсутствует, в действительности имеется   даже   слабая   тенденция   к   его уменьшению с ростом температуры.

На рис 169 даны в сравнении графики зависимости входного тока от температуры для нескольких операционных усилителей в интегральном исполнении. ОУ с ПТ-входом имеют наименьшие значения входного тока при комнатной температуре (и ниже), однако их входной ток быстро растет с температурой, и их графики пересекают кривые усилителей с хорошо спроектированными входными каскадами на биполярных транзисторах, таких как LM11 и LT1012. Эти биполярные ОУ наряду с «призерами» среди ОУ на ПТ с р - n-переходом по минимуму входного тока, такими как ОРА111 и AD549, весьма дороги. При этом, чтобы дать представление о том, чего можно ожидать от недорогих (ценой меньше доллара) ОУ, мы включили сюда также и ОУ, являющиеся повседневной «похлебкой», такие как биполярный ОУ типа 358 и ОУ на ПТ с р—n-переходом LF411.

Ток ударной ионизации ПТ с р-n-переходом. В дополнение к обычным эффектам утечки затвора в n-канальных ПТ с р-n-переходом в гораздо большей степени проявляются токи утечки при работе с существенными уровнями Uси и Iс (ток утечки, оговариваемый в паспорте, измеряется при совершенно нереальных условиях Ucи =Iс=0!). Рис.170 показывает, что происходит. Ток утечки затвора остается близким к Iз.ут до тех пор, пока мы не достигнем критического напряжения сток-затвор, при котором кривая круто взмывает вверх. Этот дополнительный ток «ударной ионизации» пропорционален току стока и он растет экспоненциально с ростом напряжения и температуры. Появление этого тока наблюдается при напряжении сток-затвор, составляющем приблизительно 25% от Uз.макс, и он может добавлять в ток затвора микроампер и более. Очевидно, что «вы-сокоомный буфер» с микроамперным входным током лишен смысла. Это то, что получится, если попытаться использовать 2N4868A в качестве повторителя с током стока 1 мА при напряжении питания 40 В.

Этот дополнительный ток утечки  затвора есть недостаток, свойственный в первую очередь n-канальным ПТ и проявляется он при повышении напряжения сток-затвор.

Проблема допускает несколько решений:

а) работайте при малых напряжениях сток-затвор, либо при малом напряжении питания стока, либо используйте каскодные связи:

б) используйте p-канальные ПТ с p-n-переходом, у которых этот эффект намного слабее или

в) применяйте МОП-транзисторы. Самое главное, что позволит вам избежать неприятностей, - это не дать возможности захватить вас врасплох.

Динамический ток затвора. Утечка затвора - это эффект, проявляющийся на постоянном токе. Любой сигнал, поданный на затвор, неминуемо вызовет также переменный ток благодаря наличию емкости затвора. Рассмотрим усилитель с обшим истоком. Как и в схеме на биполярных транзисторах, можно наблюдать эффект, вызванный просто емкостью входа относительно земли (Свх), но есть еше мультипликативный емкостной эффект Миллера, который влияет на емкость обратной связи (Сос). Есть две причины, почему   емкостной   эффект   проявляется у ПТ более серьезно, чем у биполярных транзисторов. Во-первых, полевым транзисторам отдают предпочтение перед биполярными, когда хотят получить очень малый входной ток; при этом емкостные токи при тех же величинах емкостей принимают более угрожающие размеры. Во-вторых, полевые транзисторы часто имеют значительно более высокие значения емкостей, чем эквивалентные биполярные.

Чтобы оценить емкостный эффект, рассмотрим усилитель на ПТ. предназначенный для работы с источником сигнала, имеющим  сопротивление   100 кОм.   Что касается постоянного тока, то здесь нет проблем, так как ток, равный пикоамперу, создает   на   внутреннем   сопротивлении указанного источника падение напряжения всего в микровольт. Однако на частоте, скажем, 1 МГц входная емкость в 5 пФ создает шунтирующее полное сопротивление приблизительно 30 кОм, что серьезно   ослабляет  сигнал.   Фактически любой   усилитель   попадает   в   неприятности, имея дело с высокоомным источником сигналов на высоких частотах, и обычное решение состоит в том, чтобы работать с низким полным сопротивлением (типичное значение 50 Ом) или использовать   подстраиваемый LC-контур для резонансной компенсации паразитной емкости. Ключ к пониманию проблемы состоит  в  том,  чтобы  не  смотреть  на ПТ -усилитель как на нагрузку сопротивлением 1012 Ом на частоте сигнала.

В качестве еще одного примера представим себе переключение 10-амперной нагрузки с помощью мощного МОП-транзистора (сколько-нибудь мощные ПТ с р—n-переходом отсутствуют), в духе рис.171. Кто-то может наивно предположить, что затвор можно возбудить от слаботочного выходного сигнала цифровой логической схемы, например от так называемой КМОП-логики, которая способна выдать ток порядка 1 мА при размахе сигнала от нуля до +10 В. На самом деле такая схема тут же вышла бы из строя, так как при токе возбуждения затвора 1 мА емкость 350 пФ обр. связи транзистора 2N6763 растянула бы процесс переключения на неспешные 20 мкс.

Но что еще хуже, динамические токи затвора (i3 = CdUc/dt) могут проходить на выход логического устройства и вывести его из строя благодаря непредсказуемым образом возникающему эффекту, известному как «защелкивание кремниевой полупроводниковой структуры».  При этом оказывается,   что   мощные   биполярные транзисторы имеют сравнимые с ПТ величины емкостей и, следовательно, сравнимые динамические входные токи: однако когда вы проектируете схему возбуждения  мощного  биполярного   10-амперного транзистора, вы заранее знаете, что в цепи возбуждения базы нужно обеспечить ток 500 мА или около того (через пару Дарлингтона или еще каким-либо образом), в то время как у ПТ вы скорее всего   будете   ожидать   гарантированно низкий   входной   ток.   И   вновь   в   этом примере несколько потускнел  блеск ПТ как   прибора   со   сверхвысоким   полным сопротивлением.

ПТ в качестве переменных резисторов

На рис.156 показаны характеристики ПТ с р-n-переходом (зависимость тока стока от Uси при различных Uзи) как в нормальном («насыщенном») режиме, так и в «линейной» области малых значений напряжения сток-исток. В начале этой главы мы привели также эквивалентную пару графиков для МОП-транзисторов (рис 141). Зависимость Iс-Ucи приблизительно линейна в области Uси, меньших Uзи-Uп, и кривые могут быть продолжены в обе стороны, так что устройство можно использовать в качестве управляемого напряжением резистора для малых сигналов любой полярности. Из формулы, выражающей Iс через Uзи в линейной области легко найти, что отношение Iс/Uзи равно l/Rcи=2k[(UзиUп)—Ucu/2]. Последний член в этом выражении представляет собой нелинейность, т. е. отклонение от резистивности характеристики (сопротивление резистора не должно зависеть от напряжения). Однако при напряжениях стока существенно меньших напряжения отсечки (при Uси→0) этот последний член становится совершенно незначимым, и ПТ ведет себя приблизительно как линейное сопротивление Rси=1/[2к(UзиUп)]. Поскольку зависящий от конкретного устройства параметр к - не та количественная характеристика, которую нам хотелось бы знать, полезнее записать Rси=R0(Uз0 - Uп)/(Uз - Uп), где сопротивление Rси при любом напряжении затвора можно определить через известное сопротивление Ro, измеренное при некотором напряжении затвора Uз0.

Обе приведенные выше формулы показывают, что проводимость (равная l/Rси) пропорциональна величине, на которую напряжение затвора превышает напряжение отсечки. Другой полезный факт состоит в том, что Rси=1/gm т.е. сопротивление канала в линейной области есть величина, обратная крутизне в области насыщения. Это удобная в пользовании зависимость, поскольку gm — параметр, который почти всегда приводится в паспорте ПТ.

Как правило, сопротивление, которое можно получить с помощью ПТ, изменяется от нескольких десятков ом (даже от 0,1 Ом для мощных МОП-транзисторов) до бесконечности. Типичным применением ПТ в качестве сопротивления является использование его в схеме автоматической регулировки усиления (АРУ); в ней коэффициент усиления меняется с помощью обратной связи таким образом, чтобы выходной сигнал удерживался в границах линейного диапазона. Применяя ПТ в схеме АРУ, следует внимательно следить, чтобы амплитуда сигнала была невелика - не более 200 мВ.

Диапазон значений Ucи, в котором ПТ ведет себя как хороший резистор, зависит от конкретного ПТ, у которого сопротивление в первом приближении пропорционально напряжению, на которое потенциал затвора превосходит Uп (или Uотс). Как правило, при Uси < 0,1(UзиUп) нелинейности составляют 2%, а при Uси= 0,25 (Uзи-Uп) возможны нелинейности порядка 10%. Согласованные пары ПТ дают возможность строить наборы сопротивлений для управления сразу несколькими сигналами. Можно улучшить линейность и одновременно расширить диапазон Ucи, в котором ПТ ведет себя как резистор, с помощью простой компенсационной схемы. Проиллюстрируем это на практическом примере.

Метод линеаризации: электронное управление усилением. Из последней формулы для 1/Rси видно, что линейность была бы почти идеальной, если бы к напряжению затвора мы добавили половину напряжения сток-исток. На рис.172 показаны две схемы, которые именно это и делают. В первой из них ПТ с р—n-переходом образует нижнее плечо резистивного делителя напряжения, формируя тем самым управляемый напряжением аттенюатор (или «регулятор громкости»). Резисторы R1 и R2 улучшают линейность добавлением напряжения 0,5 Uси к Uзи, как только что говорилось.  Показанный на схеме ПТ с р- n-переходом имеет в проводящем состоянии (при заземленном затворе) сопротивление 60 Ом (максимум), что дает диапазон ослабления сигнала от 0 до 40 дБ.

Во второй схеме используется МОП-транзистор в качестве перестраиваемого эмиттерного сопротивления в усилителе переменного тока с эмиттерной обратной связью. Обратите внимание на то, что по постоянному току эмиттерная обратная связь обеспечивается источником стабильного тока (зеркало Вилсона или диодный стабилизатор тока на ПТ), эта часть схемы несет две нагрузки: а) она ведет себя на частоте сигнала как цепь с очень высоким полным сопротивлением, что позволяет ПТ с перестраиваемым сопротивлением задавать коэффициент усиления, изменяющийся в широком диапазоне (включая Кu << 1), и б) обеспечивает простое смещение. За счет применения разделительного конденсатора мы организовали схему таким образом, что ПТ воздействует только на коэффициент усиления по переменному току (на усиление сигнала). Без этого конденсатора смещение биполярного транзистора изменялось бы с изменением сопротивления ПТ.

Линеаризация Rси при помощи резистивного делителя напряжения затвора, представленная выше, исключительно эффективна. На рис.173 приведены для сравнения полученные путем измерений графики зависимости Iс от Uси в линейной (с низким Uси) области характеристик ПТ при наличии и в отсутствие схемы линеаризации. Такая линеаризующая схема особенно важна для тех применений, где требуются малые искажения при размахе сигнала свыше нескольких милливольт.

Применяя ПТ для регулировки усиления, а именно в схемах АРУ или модуляторов, т.е. устройств, в которых амплитуда высокочастотного сигнала меняется пропорционально сигналу звуковой частоты, есть смысл обратиться также к ИМС «аналогового умножителя». Это-высокоточные устройства с хорошим динамическим диапазоном, обычно применяются для получения произведения двух напряжений. Один из этих сомножителей может быть управляющим сигналом постоянного тока, устанавливающим масштабный множитель для второго входного сигнала, т.е. коэффициент усиления. В аналоговом умножителе используется зависимость gm от Iк, свойственная биполярному транзистору (gm = [Iк(мА)/25] См), и применяются группы согласованных транзисторов, чтобы избежать проблем разброса параметров и сдвига на очень высоких частотах (100 МГц и выше)  часто  для  этой  же  цели  лучше использовать простые пассивные «балансные смесители».

Важно помнить, что ПТ в смысле проводимости ведет себя при малых напряжениях Uси как линейное сопротивление, а не как источник тока, что характерно для коллектора биполярного транзистора, и он работает как сопротивление во всем диапазоне до 0 В между истоком и стоком (здесь нет ни диодных перепадов, ни чего-нибудь в этом роде, о чем стоило бы беспокоиться). Существуют ОУ и семейства логических элементов (КМОП), в которых используется это полезное свойство, так что насыщение на выходе у этих схем наступает именно на уровне напряжения питания.

КЛЮЧИ НА ПТ.

Две первые схемы на ПТ. которые в качестве примера мы привели в начале этой главы, были ключами: схема логического ключа и схема переключателя линейного сигнала. Они попадают в перечень наиболее важных применений ПТ, и в них используются те преимущества, которые дают уникальные характеристики ПТ: высокое полное сопротивление затвора и резистивный характер проводимости в обоих направлениях, четко просматривающийся вплоть до напряжения 0 В. На практике обычно используют МОП-транзисторные интегральные микросхемы (а не схемы на дискретных транзисторах) во всех цифровых и линейных ключах, и только для мощных ключей дискретные ПТ предпочтительнее. Однако и в этих случаях важно (и интересно!) понимать, как работают эти чипы; в противном случае вы почти гарантированы пасть жертвой какого-нибудь загадочного ненормального поведения схемы.

3.11. Аналоговые ключи на ПТ

Очень часто ПТ, в основном МОП-транзисторы, применяются в качестве аналоговых ключей. В силу таких свойств, как малое сопротивление в проводящем состоянии («ВКЛ») при любом напряжении сигнала вплоть до 0 В. крайне высокое сопротивление в состоянии отсечки («ВЫКЛ»), малые токи утечки и малая емкость, они являются идеальными ключами, управляемыми напряжением, для аналоговых сигналов. Идеальный аналоговый (или линейный) ключ ведет себя как совершенный механический выключатель: во включенном состоянии пропускает сигнал к нагрузке без ослаблений или нелинейных искажений, в выключенном - ведет себя как разомкнутая цепь. Он имеет пренебрежимо малую емкость относительно земли и вносит ничтожно малые наводки в сигнал от переключающего его уровня, приложенного к управляющему входу. 

Рассмотрим пример (рис.174). Т1 - n-канальный МОП-транзистор обогащенного типа, не проводящий ток при заземленном затворе или при отрицательном напряжении затвора. В этом состоянии сопротивление сток-исток (Rвыкл), как правило, больше 10000 МОм, и сигнал не проходит через ключ (хотя на высоких частотах будут некоторые наводки через емкость сток-исток). Подача на затвор напряжения +15 В приводит канал сток-исток в проводящее состояние с типичным сопротивлением от 25 до 100 Ом (Rвкл) для ПТ, используемых в качестве аналоговых ключей. Схема не критична к значению уровня сигнала на затворе.

Приведенная схема будет работать при положительных сигналах, не выше 10 В; при более высоком уровне сигнала напряжение на затворе будет недостаточным, чтобы удержать ПТ в состоянии проводимости (Rвкл начинает расти): отрицательные сигналы вызовут включение ПТ при заземленном затворе (при этом появится прямое смещение перехода канал-подложка). Если надо переключать сигналы обеих полярностей (т.е. в диапазоне от —10 до +10 В), то можно применить такую же схему, но с затвором, управляемым напряжением - 15 В (ВЫКЛ) и + 15 В (ВКЛ); подложка должна быть подсоединена к напряжению -15 В.

Для любого ПТ-ключа сопротивление нагрузки должно быть в диапазоне от 1 до 100 кОм, чтобы предотвратить емкостное прохождение входного сигнала в состоянии «ВЫКЛ», которое имело бы место при большем сопротивлении. Сопротивление нагрузки выбирается компромиссным. Малое сопротивление уменьшит емкостную утечку, но вызовет ослабление входного сигнала из-за делителя напряжения, образованного сопротивлением проводящего ПТ Rвкл и сопротивлением нагрузки.

Логические и мощные ключи на МОП-транзисторах

Другие виды применений ПТ-ключей - это логические и мощные переключающие схемы. Отличить их просто. При переключении     аналогового     сигнала     мы используем ПТ как последовательный ключ, разрешающий или блокирующий прохождение аналогового сигнала, который представляет собой изменяющееся в некотором диапазоне (непрерывным, т.е. аналоговым образом) напряжение. Аналоговый сигнал-это обычно сигнал, имеющий низкий уровень напряжения и незначительную мощность. С другой стороны, при логическом переключении ключи на МОП-транзисторах замыкаются и размыкаются, перебрасывая выход схемы от одного источника питания к другому. Фактически эти «сигналы» являются цифровыми, а не аналоговыми - они скачком переходят от уровня питания одного источника к другому, представляя тем самым два состояния: «высокое» и «низкое». Промежуточные уровни напряжения не являются полезными или желательными; фактически, они даже незаконны! И наконец, понятие «мощные переключатели» относится к включению и выключению питания нагрузки, такой как лампа, обмотка реле или двигатель вентилятора. В таких применениях обычно и напряжения, и токи велики. Рассмотрим вначале логические переключатели.

Логические ключи. На рис.175 показан простейший тип логического переключателя на МОП-транзисторе. В обеих схемах в качестве нагрузки используется резистор и обе они осуществляют логическую функцию инвертирования-высокий логический уровень на входе создает низкий уровень на выходе, и наоборот. Вариант схемы на n-канальном транзисторе включает выход на землю при подаче на затвор высокого уровня, тогда как в р-канальном варианте на резисторе образуется высокий логический уровень при заземленном (низкий уровень) входе.

Обратите внимание на то, что МОП-транзисторы в этих схемах используются как инверторы с общим истоком, а не как истоковые повторители. В цифровых логических схемах подобных представленным нас обычно интересует выходное напряжение («логический уровень»), продуцируемое некоторым входным напряжением; резистор служит просто пассивной нагрузкой в цепи стока, обеспечивая при запертом ПТ выходное напряжение, равное напряжению питания стока. С другой стороны, если мы заменим резистор осветительной лампочкой, реле, приводом печатающей головки или какой-то другой мощной нагрузкой, получим схему мощного переключателя (рис.142). Хотя мы используем ту же самую схему «инвертора», однако при переключении мощной нагрузки нас интересует ее включение и выключение, а не напряжение выхода.

Инвертор на КМОП. Представленные выше инверторы на n-канальном или р-канальном МОП-транзисторе имеют недостатки: они потребляют ток в состоянии «ВКЛ» и имеют относительно высокое выходное сопротивление в состоянии «ВЫКЛ». Можно уменьшить выходное сопротивление (уменьшив R), но только ценой увеличения рассеиваемой мощности, и наоборот. За исключением источников тока иметь высокое выходное сопротивление, конечно же, всегда плохо. Даже если подключенная к выходу нагрузка имеет высокое сопротивление (например, это затвор другого МОП-транзистора), все равно возникают проблемы шумов из-за емкостных наводок и уменьшается скорость переключения из состояния «ВКЛ» в состояние «ВЫКЛ» («хвост переключения») за счет паразитной емкости нагрузки. В этом случае, например, инвертор на n-канальном МОП-транзисторе со стоковым резистором, имеющим компромиссное   сопротивление,   скажем 10 кОм, даст на выходе форму сигнала, показанную на рис.176.

Ситуация напоминает однокаскадный эмиттерный повторитель, в котором потребляемая мощность в состоянии покоя и мощность, направляемая в нагрузку выбираются из тех же компромиссных соображений. Решение здесь одно - использование пушпульной схемы, особенно хорошо подходящей для переключателей на МОП-транзисторах. Взгляните  на  рис.177; здесь показано, как можно было бы организовать пушпульный (двухтактный) ключ. Потенциал земли на входе вводит нижний транзистор в состояние отсечки, а верхний - во включенное (замкнутое) состояние, в результате чего на выходе будет высокий логический уровень. Высокий (+ Ucc) уровень входа действует противоположным образом, давая на выходе потенциал земли. Это инвертор с низким выходным сопротивлением в обоих состояниях и в нем совершенно отсутствует ток покоя. Называют его КМОП-инвертор (инвертор на комплементарных МОП-транзисторах), и он является базовой структурой для всех цифровых логических КМОП-схем-семейства, которое уже стало преобладающим в больших интегральных схемах (БИС) и которому, похоже, предопределено заменить более ранние семейства логических схем (так называемые ТТЛ-схемы), построенные на биполярных транзисторах. Обратите внимание на то, что КМОП-инвертор представляет собой два комплементарных МОП-ключа, соединенных последовательно и включаемых попеременно, в то время как аналоговый КМОП-ключ (рассмотренный ранее в этой главе) - это параллельно соединенные     комплементарные      МОП-ключи включаемые   и   выключаемые   одновременно.

О цифровых КМОП-схемах гораздо больше будет сказано позднее. На сей момент остановимся на очевидном: КМОП-схемы - это семейство маломощных логических схем (с нулевым потреблением мощности в состоянии покоя), имеющих высокое полное входное сопротивление и жестко заданные уровни выходного напряжения, соответствующие полному диапазону напряжений питания. Однако прежде чем оставить сей предмет, мы не можем устоять против соблазна показать еще одну КМОП-схему (рис.178). Это логический вентиль И-НЕ, на выходе которого будет низкий логический уровень только в том случае, если на обоих входах - на входе А и на входе В—будет высокий уровень. Понять, как он работает, исключительно просто.

Если уровни А и В-o6a высокие, то оба последовательно включенные n-канальные МОП-ключи Т1 и Т2 находятся в проводящем состоянии, жестко фиксируя на выходе потенциал земли; p-канальные ключи Т3 и Т4 оба разомкнуты, так что ток через них не течет. Однако если уровень на любом из входов А или В (или на обоих) низкий, то соответствующий р-канальный МОП-транзистор открыт, подавая на выход высокий уровень, так как один (или оба) транзистор последовательной цепи Т1 Т2 закрыт и ток через них не проходит.

Схема называется вентилем И-НЕ, поскольку она осуществляет логическую функцию И, но с инверсным (НЕ) выходом.

Цифровые логические КМОП-схемы. которые мы будем рассматривать позже, строятся путем комбинирования этих базовых вентилей. Сочетание очень малой потребляемой мощности и жестко заданного выходного напряжения, привязанного к шинам питания, делает выбор семейства логических схем на КМОП-транзисторах предпочтительным для большинства цифровых схем, что и объясняет их популярность. Кроме того, для микромощных схем (таких как наручные часы и малые измерительные приборы с батарейным питанием) это вообще единственное решение.

Однако, если мы не хотим впасть в заблуждение, стоит отметить, что мощность, потребляемая КМОП-логикой, хотя и очень мала, но не равна нулю. Существуют два механизма, вызывающие появление тока стока. Во время переходных процессов через выход КМОП-схемы должен проходить кратковременный ток I= CdU/dt, чтобы зарядить имеющуюся на выходе емкость той или иной величины (рис.179). Емкость нагрузки образуется как за счет емкости проводников («паразитная» емкость), так и за счет входной емкости дополнительной логической схемы, подключенной к выходу. Фактически, поскольку сложный чип на комплементарных МОП-транзисторах содержит много вентилей, каждый из которых нагружен на некоторую внутреннюю емкость, в любой КМОП-схеме имеется некоторый ток стока, который участвует в переходных процессах, даже если сам чип не подключен ни к какой нагрузке. Неудивительно, что этот «динамический» ток стока пропорционален скорости, с которой происходит этот переходный процесс. Второй механизм появления тока стока в КМОП-схеме показан на рис.180.

При  переходе напряжения на входе скачком от потенциала земли к уровню напряжения питания и обратно существует область, в которой оба МОП-транзистора находятся в состоянии проводимости, в результате чего возникает всплеск тока от Ucc на землю. Его иногда называют «ток класса А» или «ломовой ток питания».  Коль скоро мы сделали ставку на КМОП-схемы, нужно отметить и другой их недостаток (фактически, он присущ всем МОП-транзисторам)-это незащищенность от повреждения статическим электричеством.


 

А также другие работы, которые могут Вас заинтересовать

35447. СТРОЕНИЕ, РАЗВИТИЕ И ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ РАЗЛИЧНЫХ ОТДЕЛОВ НЕРВНОЙ СИСТЕМЫ 15.49 KB
  В центре спинного мозга расположено серое вещество скопление нервных клеток нейронов окруженное белым веществом образованным нервными волокнами. Рефлексы мочеиспускания и дефекации рефлекторного набухания полового члена л иззержснчс семени у мужчины эрекция и ЭЯКУЛЯЦИЯ также связаны с функцией спинного мозга.Спинной мозг осуществляет и проводниковую функцию нервные волокна составляющие основную массу белого вещества образуют проводящее SjTH сииндаго мозга.Деятельность спинного мозга у человека в значительной подчинена координирующим...
35448. My Favourite Film Romeo and Juliet 14.76 KB
  And Ill try to tell you about this film. In the town of Verona there were two rich families, the Capulets and the Montagues. There was an old quarrel between those two families. One day Capulet made a great supper. At that supper Romeo saw Juliet and fell in love with her at ones.
35449. Gone with the wind. My Favourite Film 17.43 KB
  I don't like horror films nd I find them quite disgusting. Sometimes I my wtch police drm or historicl film but I'm not very keen on these types of films. Now let me tell you bout one of my fvourite films Gone with the wind by the novel by Mrgret Mitchell.
35450. Высшая нервная деятельность детей на протяжении первых 3 лет жизни 13.23 KB
  Высшая нервная деятельность детей раннего возраста характеризуется неуравновешенностью двух основных нервных процессов: процессы возбуждения преобладают над процессами торможения. В поведении детей много широко разлитых иррадиированных реакций. Поэтому нельзя требовать от детей быстрого прекращения начатого ими действия или выполнения какоголибо движения и быстрого переключения с одного действия на другое.
35451. Условные и безусловные рефлексы 10.8 KB
  Безусловные рефлексы природный запас готовых стереотипных реакций организма. Безусловные рефлексы одинаковы у всех особей одного вида. Условные рефлексы Но поведение высших животных и человека характеризуется не только врожденными т.
35452. Мотивация и емоции 10.94 KB
  На основании мотиваций формируется поведения ведущее к удовлетворению исходной потребности. Под эмоциями следует понимать определенное состояние организма человека и высших животных которое формируется под влиянием внешней или внутренней потребности или мысленного представления и сопровождается комплексом соматических и вегетативных сдвигов имеющих адаптационное значение. Таким образом эмоции следует рассматривать в качестве своеобразной приспособительной реакции которая формируется в процессе эволюции.
35453. Рост и развитие косной ткани 13.28 KB
  Можно выделить две различающиеся по происхождению группы костей. Большая часть костей нашего тела развивается на месте хряща. После этого продольный рост костей возможен в ограниченных пределах за счет суставного хряща покрывающего эпифизы на поверхности обращенной в полость сустава.Рост костей в толщину происходит по их поверхности.
35454. Двигательный режим учащихся и вред гиподинамии 14.08 KB
  Суточная двигательная активность детей может быть выражена в объеме естественных локомоций. Например у мальчиков 1415 лет по сравнению со школьниками 89 лет суточная двигательная активность увеличивается более чем на 35 а объем выполненной при этом работы на 160. Естественная суточная активность девочек ниже чем мальчиков. Девочки в меньшей мере проявляют двигательную активность самостоятельно и нуждаются в большей доле организованных форм физического воспитания.
35455. Художественное объединение «Мир искусства» 3.55 MB
  Бенуа и театральный деятель С. Бенуа объединение Мир искусства редактировал одноимённый журнал с 1898 по 1904 и сам писал искусствоведческие статьи. Историкохудожественную выставку русских портретов в Петербурге 1905; Выставку русского искусства в Осеннем салоне в Париже с участием произведений Бенуа Грабаря Кузнецова Малявина Репина Серова Явленского 1906 и др. Бенуа Александр Николаевич 1870 – 1960 Алекса́ндр Никола́евич Бенуа́ 21 апреля 3 мая 1870 9 февраля 1960 русский художник историк искусства художественный...