12208

ИССЛЕДОВАНИЕ ПОГЛОЩЕНИЯ СВЕТА

Лабораторная работа

Физика

ИССЛЕДОВАНИЕ ПОГЛОЩЕНИЯ СВЕТА Методические указания по выполнению лабораторной работы № 84 по оптике для студентов инженернотехнических специальностей Курск 2010 УДК 681.787.2 Составители: А.А. Родионов В.Н. Бурмистров Л.П. Пет...

Русский

2013-04-24

114.5 KB

15 чел.

ИССЛЕДОВАНИЕ ПОГЛОЩЕНИЯ СВЕТА

Методические указания по выполнению лабораторной работы

№ 84 по оптике для студентов инженерно-технических

специальностей

Курск 2010

УДК 681.787.2

Составители: А.А. Родионов, В.Н. Бурмистров, Л.П. Петрова

Рецензент

Кандидат физико-математических наук, доцент В.М. Пауков

Исследование поглощения света [Текст]: методические указания по выполнению лабораторной работы по оптике № 84 для студентов инженерно-технических специальностей / Юго-Зап. гос. ун-т; сост.: А.А. Родионов, В.Н. Бурмистров, Л.П. Петрова. Курск, 2010. 8 с.: ил. 2. Библиогр.: с.8.

Содержат сведения по изучению поглощения оптически прозрачных сред.

Методические указания соответствуют требованиям программы, утвержденной учебно-методическим объединением для студентов инженерно-технических специальностей.

Предназначены для студентов инженерно-технических специальностей дневной и заочной форм обучения.

Текст печатается в авторской редакции

Подписано в печать    . Формат 6084 1/16.

Усл.печ.л.      Уч.-изд.л.  Тираж 100 экз. Заказ.      Бесплатно.

Курский государственный технический университет.

305040 Курск, ул. 50 лет Октября, 94.


Цель работы: научиться использовать явление поглощения света для определения коэффициентов пропускания, оптической плотности жидких и твердых тел, а также концентрации веществ в растворах.

Принадлежности: колориметр фотоэлектрический КФК-2 с набором светофильтров, кюветы с раствором.

Теоретическое введение

При прохождении световой волны через вещество, некоторая часть энергии волны затрачивается на возбуждение колебаний электронов. Частично эта энергия возвращается излучению в виде вторичных волн, порождаемых электронами, частично переходит в тепло, т.е. в энергию движения атомов. Таким образом, интенсивность света уменьшается – свет поглощается.

Если  – интенсивность света, падающего на поверхность прозрачного слоя толщиной l, а I – интенсивность света, вышедшего из вещества, то уменьшение интенсивности в слое : , где μ – линейный коэффициент поглощения, зависящий от природы вещества и длины волны света λ, а знак “-“ показывает, что с увеличением толщины поглощающего слоя, интенсивность прошедшего света уменьшается.

,

закон Бугера.   (1)

При  интенсивность . Таким образом, численное значение α показывает, что при толщине слоя  интенсивность волны падает в 2,72 раза.

Зависимость μ(λ) определяет спектр поглощения данного вещества.

Вещества в парообразном состоянии поглощают свет только в тех областях, в которых частота падающей волны будет равна собственной частоте колебаний электронов внутри атомов (атомы не взаимодействуют друг с другом). В результате образуется линейчатый спектр поглощения.

В твердых телах, жидкостях и газах при высоких давлениях атомы не изолированы, они взаимодействуют друг с другом, поэтому полосы поглощения расширяются и сливаются в сплошной спектр. Резонансные частоты уже почти не разделены интервалами.

Для металлов , что обусловлено наличием у них свободных электронов. Электроны колеблются под действием поля волны, образуя быстропеременные токи. В итоге энергия света переходит в джоулево тепло и наблюдается полное поглощение света, поэтому металлы являются непрозрачными для света.

Чаще всего для характеристики плоскопараллельного слоя исследуемого вещества применяют коэффициент пропускания τ, представляющий собой отношение интенсивностей прошедшего и поглощенного света. Этот коэффициент учитывает как потери света внутри вещества, так и потери за счет отражений от поверхности слоя. Расчет показывает, что в случае плоскопараллельного слоя оптически однородного вещества:

,     (2)

где r – коэффициент отражения каждой поверхности, l – толщина слоя.

Как и μ, коэффициент τ зависит от природы вещества и длины волны света λ. Зависимость τ(λ) характеризует спектр пропускания данного слоя вещества. Чтобы определить коэффициент поглощения μ по формуле (2), надо знать не только τ, но и толщину слоя и r. Роль отражения можно исключить, если взять два образца из одинакового вещества, но разной толщины l. Тогда отношение коэффициентов светопропускания этих образцов будет зависеть только от произведения μ на разность их толщины. Сократив коэффициент перед экспонентой, получим:

    (3)

В качестве меры поглощения света используется также оптическая плотность:

,   (4)

где . Таким образом, величины μ, r, D определяются опытным путем на основе нахождения значения τ.

В лабораторной работе исследование поглощения света проводится при помощи фотоэлектрического колориметра КФК-2. Колориметрия (от латинского color - цвет и греч. metréo - измеряю) – группа фотометрических методов количественного анализа, направленных на определение концентрации вещества в окрашенном растворе путем измерения количества света, поглощенного этим раствором.

Действие колориметра основано на свойстве окрашенных растворов поглощать проходящий через них свет тем сильнее, чем выше в них концентрация окрашивающего вещества. Все измерения с помощью колориметра производятся в монохроматическом свете того участка спектра, который наиболее сильно поглощается данным веществом в растворе (и слабо – другими компонентами раствора). Поэтому колориметры снабжаются набором светофильтров; применение различных светофильтров с узкими спектральными диапазонами пропускаемого света позволяет определять по отдельности концентрации разных компонентов одного и того же раствора.

Принцип измерения коэффициента пропускания при помощи колориметра КФК-2 состоит в том, что на фотоприемник направляются поочередно световые потоки I0 и I, а затем определяется их отношение. Для нахождения этого отношения вначале в световой поток помещают кювету с растворителем или контрольным раствором. Изменяя чувствительность колориметра нужно добиться, чтобы отсчет по шкале коэффициентов пропускания колориметра был равен 100. То есть полный световой поток I0 условно принимается равным 100%. Затем в световой пучок помещают кювету с исследуемым раствором. Полученный отсчет по шкале коэффициентов пропускания будет соответствовать I, то есть будет равен . Затем по (4) находим D, и поочередно подставляя в светопоток колориметра кюветы с одинаковыми по составу растворами, но разными длинами  и , аналогично определяем  и , а затем по (3) величину μ в том или ином диапазоне длин волн в зависимости от выбранного светофильтра. Концентрацию же раствора можно найти по D, используя градировочную кривую, построенную по нескольким значениям D для растворов с известными (заданными) концентрациями.

Порядок выполнения работы:

1. Ознакомиться с расположением ручек управления на передней панели колориметра. Слева находится переключатель светофильтров, вмонтированных в диск. Рабочее положение каждого диска фиксируется и имеет маркировку. Так 1-й диск-светофильтр максимально пропускает свет с λ = 315 нм (с полосой 35 ± 15нм); 2-й = 364 (25 ± 10); 3-й = 400 (45 ± 10); 4-й =440 (40 ± 15); 5-й = 490 (35 ± 10);6-й =540 (25 ± 10); 7-й =590 (25 ± 10); 8-й =670 (20 ± 5); 9-й = 750 (20 ± 5); 10-й = 870 (25 ± 5); 11-й = 990 (25 ± 5нм). Каждый из этих светофильтров имеет свой максимальный коэффициент пропускания. Внизу в центре расположен переключатель кювет 1 и 2, фиксирующий светопучки на них в соответствующих крайних положениях этого переключателя. Над ним находится крышка кюветного отделения, при её открытии шторка закрывает окно перед фотоприемниками, измеряющими интенсивность света с выводом сигнала на шкалу регистрирующего прибора, оцифрованную в единицах коэффициента пропускания τ и оптической плотности D. Переключение фотоприемников осуществляется ручками справа («чувствительность» и «установка 100 грубо»). Кюветы устанавливаются в кюветодержатель, который помещают под крышку кюветного отделения.

2. Подготовить прибор к работе. Для этого колориметр включить в сеть за 15 минут до начала измерений. Во время прогрева кюветное отделение должно быть открыто.

3. Зафиксировать рукояткой нужный цветовой светофильтр 4-й =440 (40 ± 15); 5-й = 490 (35 ± 10).

4. Установить минимальную чувствительность колориметра. Для этого ручку «чувствительность» установить в положение «1», а ручку «установка 100 грубо» в крайнее левое положение.

5. Перед измерениями и переключением фотоприемника проверить установку стрелки колориметра «0» по шкале коэффициента пропускания Т при открытом кюветном отделении (крышка поднята вверх). При смещении стрелки от нулевого положения, ее подводят к нулю с помощью потенциометра НУЛЬ.

6. В пучок поместить кювету с растворителем или контрольным раствором, по отношению к которому производятся измерения, а также с исследуемым раствором.

7. Закрыть крышку кюветного отделения.

8. Ручками «чувствительность», «установка 100 грубо» и «точно» установить отсчет 100 по шкале прибора. Ручка «чувствительность» может при этом находиться в одном из трех положений - «1», «2» или «3».

9. Затем поворотом рукоятки переключить светопоток на кювету с исследуемым раствором.

10. Снять отсчет по шкале колориметра, соответствующий коэффициенту пропускания исследуемого раствора в процентах, или по шкале в единицах оптической плотности.

11 .Измерения проводить 3-5 раз и окончательное значение измерений величины определить как среднее арифметическое из полученных значений.

12. Для определения неизвестной концентрации раствора нужно произвести измерение величины D для него (3-5 раз), а затем по градировочной кривой определить концентрацию С %. На градировочной кривой нанесена зависимость D (С %), построенная для того же светофильтра и кюветы, для которых измеряется оптическая плотность Dx, раствора с неизвестной концентрацией Сх.

13. По окончании работы на колориметре ручки «чувствительность», «установка 100 грубо» привести в крайнее левое положение, затем включить тумблер «сеть».

ПРИМЕЧАНИЕ:

1. Перед каждым измерением кюветы должны тщательно протираться спирта - эфирной смесью. При установке кювет нельзя касаться пальцами их рабочих участков (ниже уровня жидкости в кювете).

2. Наливать жидкость в кюветы нужно до метки на их боковых стенках.

3. Выбор оптимального размера кюветы производятся для раствора средней концентрации (из всех намеченных для измерения). Если для него оптическая плотность составляет 0,3 – 0,5, то при данной кювете ошибка измерений будет минимальной.

4. Светофильтр для работы выбирается так, чтобы длина волны, соответствующая максимуму коэффициента пропускания светофильтра, приходилась на определенный участок спектральной кривой испытываемого раствора. Он находится по экспериментальному графику зависимости  испытываемого раствора и соответствует максимальной величине D.

Контрольные вопросы:

  1.  Поглощение света, закон Бугера.
  2.  Спектры поглощения веществ в различных состояниях.
  3.  Колориметры и колориметрия.
  4.  В чем состоит принцип измерения коэффициента пропускания при помощи колориметра КФК-2?

Библиографический список:

  1.  Савельев И. В. Курс физики [Текст] : учебное пособие : в 3 т. Т. 3 : Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц / И. В. Савельев. - 2-е изд., стер. - СПб. : Лань, 2006. - 320 с.;
  2.  Детлаф А.А. Яворский Б.М. Курс физики. М.: 2003. С. 457-461,  553-557.


 

А также другие работы, которые могут Вас заинтересовать

52159. Алгоритми та програмування 67.5 KB
  Поняття математичної інформаційної моделі. Поняття алгоритму. Учні повинні знати: основні етапи розв'язування задачі з використанням ЕОМ; поняття інформаційної моделі задачі; визначення вхідних даних та результатів поняття алгоритму; поняття виконавця; властивості алгоритмів; способи та форми подання алгоритмів; основні базові структури алгоритмів; сутність методу покрокової деталізації; основні Ідеї та принципи структурного програмування. Поняття про мову програмування.
52160. Алкоголь - ворог № 1 64 KB
  Мета: сформувати уявлення що алкоголізм це хвороба викликати почуття образи до алкогольних напоїв визначити причини та наслідки вживання алкоголю активізувати увагу на статистичних даних щодо вживання алкогольних напоїв навчити використовувати здобуті на виховному заході знання в практичній діяльності виховувати дбайливе ставлення до власного здоров’я. Обладнання: фліпчарт листи А1 маркери мультимедійна установка рекламні плакати про вживання алкоголю клей ножиці.Інформаційне повідомлення Наслідки вживання алкоголю.Вплив...
52161. Вплив пивного алкоголізму на формування особливостей поведінки підлітка 39.5 KB
  Мета: розширити й поглибити знання учнів про шкідливий вплив пива, довести,що пивний алкоголізм-це соціальне зло і загроза здоров ю нації, показати,що вживання пива веде до деградації особистості, виховувати негативне ставлення до пива,досягти того,щоб учні усвідомили необхідність вести здоровий спосіб життя.
52162. Видатний український математик Георгій Вороний - одна з найяскравіших індивідуальностей в історії Чернігівщини 60.5 KB
  Познайомитись з життєвим шляхом та науковою спадщиною Георгія Вороного. Сьогодні ми ознайомимося із життєвим шляхом та науковою спадщиною великого математика Георгія Вороного. Вони вивчили матеріали про Георгія Вороного. Розповідь про життя і діяльність Георгія Вороного супроводжується презентацією.
52163. Амбіції та плани 2.61 MB
  So, you’ve understood that our today’s topic is «Jobs and Skills» and, what more, during lesson we are going to find out what skills a person needs to do his (her) job well, what professions are most demanded nowadays, what are the most suitable jobs for teenagers, how ambitious you are.
52164. Зелений агресор – амброзія полинолиста 100 KB
  Цілі: На прикладі амброзії полинолистої показати роль рослин в екосистемах. Тип уроку: практична робота з елементами бесіди Обладнання: гербарій амброзії полинолистої мультимедійна презентація робочий зошит Організаційний момент Мотивація навчальної діяльності Учитель. На мультимедійній дошці з’являється слайд з зображенням амброзії полинолистої Як ви здогадалися це – амброзія полинолиста.Розглянути слайд презентації та гербарний екземпляр амброзії полинолистої.
52165. Північна Америка. Загальні відомості, особливості фізико-географічного положення, Історія відкриття та освоєння Північної Америки 46 KB
  Тема уроку: Північна Америка. Обладнання: атласи контурні карти стінні карти Північна Америка Карта півкуль підручник слайди для мультимедійної дошки. Отже ми починаємо вивчати материк Північна Америка. Розповідь вчителя За своєю площею 204 млн км2а з островами 244 млн км2 Північна Америка посідає третє місце серед континентів планети.
52166. ПІВНІЧНА АМЕРИКА 67 KB
  Завдання етапу: Назвіть і покажіть на карті крайні точки материка. За яким планом вивчають материк Розкажіть план характеристики географічного положення материка та поясніть чому опис материка починається з характеристики його географічного положення 4.Опишіть географічне положення материка.Яка площа Північної Америки Порівняйте з іншими материками.
52167. Населення та політична карта Північної Америки. Українська діаспора 69.5 KB
  Міхелі фізична карта світу політична карта світу атласи таблиці картини про США та Канаду. Найбільші країни – це США Канада Мексика а також на крайньому півдні та островах Карибського моря багато дрібних за площею держав та залежних територій.197 Виписати країни та їх столиці учні виписують к стовпчик за зразком США Вашингтон Канада – Оттава...