12248

Прямые методы минимизации функции одной переменной

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа 1. Прямые методы минимизации функции одной переменной. В данной работе рассматриваются методы решения поставленной задачи не использующие вычисления производных прямые методы минимизации. Постановка задачи: Требуется найти безусловный ми...

Русский

2013-04-24

1 MB

64 чел.

Лабораторная работа 1.

Прямые методы минимизации функции одной переменной.

В данной работе рассматриваются методы решения поставленной задачи, не использующие вычисления производных (прямые методы минимизации).

Постановка задачи: Требуется найти безусловный минимум функции одной переменной f(x), т.е. такую точку , что . Значение точки минимума вычислить приближенно с заданной точностью ε.

Предполагается, что для функции f(x) предварительно определен начальный интервал неопределенности L0 = [a0, b0] (имеется априорная информация о положении точки минимума, а именно то, что точка минимума , но более точное положение ее неизвестно), причем на заданном интервале функция является унимодальной (для любых функция монотонно убывает, для любых функция монотонно возрастает).

Метод равномерного поиска (метод перебора).

Стратегия поиска: Метод относится к пассивным стратегиям.

Задается количество интервалов N, на которое разбивается исходный интервал
L0 = [a0, b0]. Вычисления производятся в N +1 равноотстоящих друг от друга точках. Путем сравнения величин f(xi), i = 0,1,…,N находится точка xk, в которой значение функции наименьшее. Искомая точка минимума считается заключенной в интервале [xk-1, xk+1].

Алгоритм:

  1. Задать начальный интервал неопределенности L0 и точность ε.
  2. Задать количество интервалов разбиения .
  3. Вычислить точки ,  .
  4. Вычислить значения функции в найденных точках: f(xi) , .
  5. Среди точек найти такую, в которой функция принимает наименьшее значение: .
  6. Выбрать приближенно , . Поиск завершен.

Метод поразрядного поиска.

Стратегия поиска: Метод является усовершенствованным вариантом метода перебора. В этом методе перебор точек интервала неопределенности L0 происходит сначала с шагом , i = 0, 1, … (при этом точка x0 совпадает с концом отрезка a0) до тех пор, пока не выполнится условие , или пока очередная из точек xi не совпадет с концом отрезка b0. После этого шаг уменьшается в несколько (2, 4, 10) раз, и производится перебор точек в противоположном направлении (с новым шагом) до тех пор, пока значения f(x) не перестанут уменьшаться, или очередная точка не совпадет с концом отрезка a0. Процедура уменьшения шага и смены направления перебора на противоположное повторяется несколько раз. Поиск прекращается, если текущий шаг дискретизации при последнем проходе алгоритма  не превосходит заданной точности .

Следует отметить, что в данном методе интервал неопределенности может быть полубесконечным: L0 = [a0, +∞) или L0 = (-, b0] (во втором случае начальное направление перебора выбирается в сторону уменьшения значений x).

Алгоритм:

  1. Задать начальный интервал неопределенности L0 и точность ε.
  2. Задать начальный шаг дискретизации .
  3. Положить i = 1, x0 = a0. Вычислить значение функции  f(x0).
  4. Определить точку xi = xi-1+Δ и значение функции  f(xi).
  5. Если и , то положить i = i +1 и вернуться к шагу 4.
  6. Задать новый шаг дискретизации .
  7. Если , то перейти к шагу 12.
  8. Вычислить точку xi = xi-1-Δ и значение функции  f(xi).
  9. Если и , то положить i = i +1 и вернуться к шагу 8.
  10. Задать новый шаг дискретизации и перейти к шагу 4.
  11. Если , то перейти к шагу 12.
  12. Выбрать приближенно , . Поиск завершен.

Метод дихотомии.

Стратегия поиска: Метод относится к последовательным стратегиям и является одним из вариантов метода исключения отрезков.

Алгоритм опирается на анализ значений функции в двух точках. Для их нахождения текущий интервал неопределенности делится пополам и в обе стороны от середины откладывается по по δ/2, где δ < 2ε – малое положительное число. По результатам сравнения значений функции в этих точках из дальнейшего рассмотрения исключается часть текущего интервала неопределенности: из трех отрезков, полученных в результате разбиения интервала, выбирается тот отрезок, который не содержит точку с меньшим значением функции, и исключается из дальнейшего рассмотрения. Условия окончания итераций для всех вариантов метода исключения отрезков стандартные: поиск заканчивается, когда длина текущего интервала неопределенности оказывается меньше установленной величины точности ε.

Алгоритм:

  1. Задать начальный интервал неопределенности L0 и точность ε.
  2. Выбрать δ < .
  3. Положить k = 0 (k – номер итерации).
  4. Вычислить длину текущего интервала L0 = b0 - a0.
  5. Вычислить точки , и значения функции f(x1), f(x2).
  6. Сравнить f(x1) и f(x2).
  7. Если , то положить ak+1 = ak, bk+1 = x2.

  В противном случае () положить ak+1 = x1, bk+1 = bk.

  1. Вычислить длину нового интервала неопределенности Lk+1 = bk+1- ak+1.
  2. Если Lk+1 > ε, то перейти к шагу 5.
  3. Выбрать приближенно , . Поиск завершен.

Метод золотого сечения.

Стратегия поиска: Метод относится к последовательным стратегиям и является одним из вариантов метода исключения отрезков.

Алгоритм опирается на анализ значений функции в двух точках, являющихся точками золотого сечения текущего интервала неопределенности. Исключение отрезка в данном случае выполняется так же, как и в методе дихотомии. При этом с учетом свойств золотого сечения на каждой итерации, кроме первой, требуется только одно новое вычисление функции.

Алгоритм:

  1. Задать начальный интервал неопределенности L0 и точность ε.
  2. Положить k = 0 (k – номер итерации).
  3. Вычислить длину текущего интервала L0 = b0 - a0.
  4. Вычислить значение и точки , .
  5. Вычислить значения функции , .
  6. Сравнить значения , .
  7. Если , то положить , , , .
    В противном случае () положить , , , .
  8. Вычислить длину нового интервала неопределенности Lk+1 = bk+1- ak+1.
  9. Если Lk+1 > ε, то перейти к шагу 5.
  10. Выбрать приближенно , . Поиск завершен.

Вопросы и задания

  1. Реализовать функции для трех методов из приведенных выше: метода перебора, метода поразрядного поиска, метода дихотомии (либо метода золотого сечения вместо метода дихотомии).
  2. Выбрать для выполнения лабораторной работы тестовую функцию, номер которой соответствует последней цифре номера Вашего компьютера
  3.  
  4.  
  5.  
  6.  
  7.  
  8.  
  9.  
  10.  
  11.  
  12.  
  13. Для выбранной функции и для каждого реализованного метода изучить зависимость скорости работы (числа вычислений функции N) от заданного значения точности ε. Для этого необходимо определить число вычислений функции N при нескольких (от трех до пяти) значениях точности, например, при  и построить график зависимости .
  14.  Провести сравнение методов между собой: сравнить сложность реализации, скорость работы (точность). Какой из рассмотренных методов более оптимален для низкой точности () и для высокой точности ()?
  15.  Сохранить результаты для использования в лабораторной работе 2.

 

А также другие работы, которые могут Вас заинтересовать

28413. ВАЛИЗА 115.1 KB
  каждая из которых обладает неприкосновенностью не подлежит ни вскрытию ни задержанию властями иностранного государства. хотя и говорит о недопустимости ее вскрытия и задержания но устанавливает что в тех случаях когда компетентные власти государства пребывания имеют серьезные основания полагать что в В. была вскрыта в их присутствии уполномоченным представителем иностранного государства.
28415. Привилегии и иммунитеты дипломатического представительства 28 KB
  Привилегии lexprivus особые правовые преимущества льготы. Иммунитеты и привилегии предоставляются не для личных выгод а для обеспечения эффективного осуществления функций дипломатических представительств как органов представляющих государство. В Венской конвенции 1961 года дипломатические иммунитеты и привилегии подразделены на иммунитеты и привилегии дипломатического представительства и личные иммунитеты и привилегии членов дипломатического персонала и их семей. К первой категории относятся: неприкосновенность помещений...
28419. Привилегии и иммунитеты международных организаций 168.91 KB
  Большое влияние на становление и объем привилегий и им_мунитетов международных организаций оказала практика при_менения дипломатических привилегий и иммунитетов т. Тот факт что привилегии и иммунитеты международных организаций почти совпадают или близки по объему привиле_гиям и иммунитетам дипломатических представительств госу_дарств за рубежом однако не дает никаких оснований считать или именовать первые как дипломатические привилегии и иммунитеты поскольку осуществление дипломатии присуще только государствам но не международным...