12265

Күн жүйесінің эволюциясы

Реферат

Астрономия и авиация

Күн жүйесінің эволюциясы Біздің Құс Жолы атты спираль тәріздес галактикамыз шамамен 150 млрд жұлдыздан құралған оның өзінің ядросы мен бірнеше спираль тәріздес тармақтары бар. Оның мөлшері 100 мың жарық жылына тең. Біздің галактикамыздағы жұлдыздардың басым көп

Казахский

2013-04-25

45.5 KB

0 чел.

Күн жүйесінің эволюциясы

     Біздің Құс Жолы атты, спираль тәріздес галактикамыз шамамен 150 млрд жұлдыздан құралған, оның өзінің ядросы мен бірнеше спираль тәріздес тармақтары бар. Оның мөлшері 100 мың жарық жылына тең. Біздің галактикамыздағы жұлдыздардың басым көпшілігі қалыңдығы 1500 жарық жылындай болатын алып  “дискінің” ішінде шоғырланған. Қазіргі кезде біздің галактикамыз космос кеңістігінде секундына 550 км жылдамдықпен қозғалып келе жатыр. Оның екі серігі - Үлкен және Кіші Магеллан бұлттары бар. Галактиканың диаметрі экватор бойынша 3·08·1013 шақырымға тең. Галактика жұлдыздары ядроны айналатын қозғалысы күрделі болады және бұл қозғалыс басқа қатты және сұйық заттардың қозғалысынан мүлдем бөлек. Жұлдыздардың айналу периоды олардың массасына және галактикалық орталықтан орналасу қашықтығына байланысты әртүрлі болады.

      Галактикадағы заттар негізінен атомдық күйде болып, оның 99% сутегі құрайды. Галактиканың ядросы көлденеңінен шамамен 30 жарық жылына тең. Осы ядро сутегінің негізгі қайнар көзі болып саналады. Біздің Күн жүйеміз Галактиканың шетінде, яғни оның ядросынан 30 жарық жылы қашықтықтығында орналасқан. Ең жақын жұлдыздармен салыстырғанда Күн Лира шоқжұлдызына қарай 20 км/сек жылдамдықпен қозғалып келеді. Сонымен қатар Күн өзінің көршілерімен бірге галактика кеңістігінде Аққу шоқжұлдызына қарай 250 км/сек жылдамдықпен айналып келеді. Күн галактиканың орталығын 180 млн жылда айналып шығады. Яғни бір галактикалық жыл шамамен 180-190 млн жылға тең. Күнге ең жақын жұлдыздар – Центаврдің альфасы (Проксима) және Сириус.

 

 

     Күн – қатты қызған (беткі температурасы – 6000С), плазмалық шар (тығыздығы 1,4 г/м3). Оның лаулаған от пен протуберанецтер орналасқан тәжі бар. Күннің сәуле шығаруының – күннің белсенділігінің – 11 жылдық циклі бар. Күннің белсенділігінің ең жоғарғы шегінде оның бетінде ерекше көп дақ байқалады. Сутегінің гелийге айналуы кезінде  

     Күннің ішкі құрылысы

     1–Гелийлік ядро; 2-конвекция зонасы; 3-хромосфера; 4-фотосфера; 5–кун дақтары; 6-протуберанецтер; 7-тәж

термоядролық реакциялар күн энергиясының көзі болып табылады. Алғаш рет термоядролық реакциялардың жүріп өтуіне қажетті температураны теориялық түрде Артур Эддингтон есептеп шығарған. Неміс физигі Ганс Бете (1967 жылы Нобель сыйлығын алған) Күнде жүретін сутегімен гелийдің термоядролық синтезінің реакциясын есептеп шығарды.

     Күн жүйесі мен жұлдыздардың пайда болуы жайлы кез-келген проблема немесе гипотезаның негізінде, Ғаламның үш фундаменталдық ерекшелігі бар: біріншіден Ғаламдағы заттардың басым көпшілігі сутегіден (75%), гелийден (25%) және басқа да химиялық элементтердің азғантай бөліктерінен құралған; екіншіден Ғаламның кезкелген нүктесінде жұлдызаралық газ және шаң бар; үшіншіден Ғаламда барлық заттар айналмалы және турбулентты қозғалыста (галактиканың формасы спираль тәріздес, жұлдыздар айналуда, планеталар күнді айналады және т.б.). Сондай ақ бізге Күн жүйесінің жасы 5 млрд жылға тең екендігін білеміз. Бұл мағлұмат бізге ғаламның өзіміз орналасқан бөлігінің тарихын елестетуге мүмкіндік береді.

     Күн жүйесінің пайда болуы  жөнінде бірнеше гипотезалар бар. Өткен ғасырда осындай гипотезаны И.Кант ұсынды. Бұл гипотезаны П. Лаплас қолдады. Жақын арада ғана В.Фесенков пен О. Шмидтің жаңа гипотезалары пайда болды. Бұл гипотезалардың басқа гипотезалардаң айырмашылығы, оларға сәйкес планеталар бастапқы ыстық компоненттерден емес, суық күйдегі заттардан түзілген. Швед астрофизигі Х.Альвен ұсынып, кейін Ф.Хойл жетілдірген Күн жүйесінің пайда болуы гипотезасының электромагниттік варианты қазіргі таңда кең таралған.

     Жұлдыздардың пайда болу үрдісі галактикада үздіксіз жүреді. Кезкелген уақытта газ бен шаң, турбуленттік күштердің әсерінен гравитациялық ядролар – протожұлдыздардың элементеріне үнемі қосылып  жатады. Пайда болған глобула протожұлдыз басынан бастап гравитациялық ядролардан қалған айналмалы қозғалысқа ие болады. Глобула үлкейе бере ақырында ыстық болғандығы соншалық, оның ішінде атомдық синтездің реакциялары өте бастайды.

     Қызудың белгілі бір шегіне жеткен кезде глобула өзінің қабығына айналған, қалған затты жарып, жан – жаққа шашыратып тастайды. Глобуланың сығылуы оның массасына прапорционалды түрде ұлғаяды. Ақырында ол атомдар өздерінің электрон қабықшаларын жоғалтатын температураға да жетеді. 15 млн градустық температурада ядролық синтез реакциялары басталады.

     Сутегі ядролары орасан зор энергия бөле отырып, гелий ядроларын түзеді. Ағылшын астрофизигі А. Эддингтонның анықтағандай, біздің Күніміз осы ядролық реакциялар жүретін термоядролық қазан болып табылады. Оның ядросының температурасы 15 млн градус, ал бетінің температурасы 60000С-ге тең. Эдингтон Күнді құрайтын газдың тұрақты тепе- теңдігін түсіндірді. Оның түсіндірмесі бойынша  тартылыс күші газдардың сығылуын тудырады, ал  сығылуға газдардың қысымы кері әсер етеді. А.Эддингтон, бұдан басқа радиациялық қысымның жұлдыздардың ішінде бар екендігін ескерді, ал  сәуле шығару жұлдыздың ішінде интенсивті жүретін болғандықтан, радиациялық қысым да елеулі болуы тиіс.

     Бұл жерде гелийді күл ретінде қалса, сутегі қанша уақыт жануы мүмкін деген сұрақ пайда болады. Жұлдыздың массасына байланысты бұл үрдіс ұзақ немесе жылдам болуы мүмкін. Массалары Күннің массасындай жұлдыздарда сутегі миллиардтаған жылдар бойы жануы мүмкін. Бірақ сутегінің қоры шексіз емес, олар қашан да болсын таусылады.

      Бұл жағдайда галактикадағы сутегінің қоры таусылғаннан кейін 100 млн градус температурада гелий жана бастайды деп жорамалданып отыр. Ендігі күл оттегі мен көміртегі болады. Оттегі мен көміртегі жану үшін біздің күннің массасы жеткіліксіз. Бірақ осы кезге дейін де күнде елеулі процестер өтеді.

     Гелий сутегіден ауыр, сондықтан ол жанып біткен соң орталықта жиналып қалады. Енді сутегі қабықтың ішінде жанады. Ал орталықта қалған гелийлік шар, қызған сайын үлкейе бастайды. Оның температурасы да көтеріле бастайды. Біздің Күнңің көлемі үлкейе бастайды. Бұл құбылыс бүкіл Күн жүйесін катастрофалық процестерге алып келеді. Мысалға, Жерде поляр  мұздықтары еріп, мұхиттар буланып, планетаны қалың тұман қаптап, онда үздіксіз жаңбыр жауады. Гелийлік өрт оны қоршаған сутегілік қабықшаны жарып, нәтижесінде  бүкіл планеталық жүйеге таралып, көптеген планеталардың атмосферасын жұлып кетіп, оларды өртеп жібереді.

     Бұдан соң ядролық пеш сөнеді. Бірақ Күн гелийлік жарылыста жойылмайды.  Жарылыстың ықпалы күн бетіне жеткенше оның сыртқы қабықшасы суыи бастайды. Гелий осыдан кейін қайта жиналып, жоғарыда көрсетілген реакция қайта басталады. Ішкі қабаттардағы температура өсіп, сыртқы қабаттардағы температура төмендейді. Ақырында атомдар түзілуге қажетті жағдайлар туып, фотондардың ағыны басталады.

      Көп мөлшерде жылу бөлінумен қатар жүретін бұл үрдіс белгілі бір шекке жеткенде, Күннің қабықшасы кеңістікке шашырап кетеді, яғни күн жарылады. Сыртқы қабығынан айрылған Күн ақ карликке айналып, тып – тыныш бірнеше  милиондаған жылдарға созылған тіршілігін жалғастыра береді.

     Егер Күннің массасы үлкен болғанда сутегінің жану процесі басқа химиялық элементтердің, мысалы, неон, магний, кремний, фосфор, күкірт, никель, т.б. түзілгенге дейін жүре берер еді. Бұл элементтердің барлығы бір-біріне кигізілген матрешкалар секілді жанатын еді, мысалы, магний – неондық қабықта, фосфор - кремнийлік қабықта және т.б. Бірақ, темірге жеткенде бұл процес тоқтайды. Себебі, темір жанбайды.  Бірақ қысым мен температура жоғарылағандығы соншалық, ең соңында электрондар мен протондар бір-бірімен қысылысып, нәтижесінде тек нейтрондар ғана қалатын жағдайға жетеді.

     Олардың алатын орны аз болатындықтан жұлдыздардың орталық өзегі одан ары сығылады, сонымен қатар қосымша энергия бөледі, бұл энергияның әсерінен сығылу процесі тездетіле түседі. Нәтижесінде көптеген нейтринолар пайда болады, бұл әлсіз бөлшектер жүйеден тез арада сыртқа шығып кетеді. Жұлдыздардың орталық бөлігінде энергия жетпегендіктен сығылу қайтадан күшейеді. Нейтринолардың ағыны ұлғаяды, бірақ олар енді жұлдыздардан бөлініп шығып кете алмайды, себебі сыртқы қабаттар өздерінің тығыздықтарын ұлғайтады. Бұл кезде гравитациялық күштердің  

     Күн жүйесі

әсерінен аса жаңа жұлдыздың жарылысы деп аталатын жарылыс болуы мүмкін.

     Осы жарылыс кезінде периодты системадағы басқа элементтер де  пайда болады. Бұл элементтер бүкіл Ғалам бойынша босып жүреді.

     Біздің Күн мен планеталар аса жаңа жұлдыздың жарылысынан кейін эволюциялаған деп саналады. Глобула протожұлдызымен бірге протопланеталық “бұлт” пайда бола бастайды, бұл бұлттың жазықтығы жұлдыздың айналысының осіне перпендикулярлы болады.

     Күн системасы 9 планетадан тұрады: Меркурий, Венера, Жер, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон.

      Аталған планеталардың барлығы бір бағытта, бір жазықтықта (Плутоннан басқасы), дөңгелек тәріздес орбиталары бойымен айнала қозғалады. Күн системасының орталық нүктесінен оның шетіне дейінгі қашықтық (Плутонға дейін) 5,5 жарық сағатына тең. Күннен Жерге дейінгі қашықтық 149 млн шақырымға тең, бұл қашықтық оның 107 диаметріне тең.

     Кішкене планеталарда планеталар серіктерінің басым көпшілігіндегідей атмосфера жоқ, өйткені оларда газдарды ұстап тұратын тартылыс күштері жеткіліксіз. Венераның атмосферасында көмірқышқыл газы басым, ал Юпитердің атмосферасында аммиак көп. Айда және Марста вулкандық жолмен пайда болған кратерлер бар.

     Үлкен планеталардың - Юпитер, Сатурн, Уран мен Нептунның құрамы ең алғашқы тұмандықта болған құбылыстарды жақсы көрсетеді. Олардың құрамы жалпы Ғаламның құрамына өте жақын. Ішкі кішігірім, яғни Меркурий, Венера, Жер мен Марс секілді планеталарда ауыр элементтер көп, ал гелий, неон сияқты газдар аз мөлшерде, себебі планеталардың гравитациялық күші әлсіз болғандықтан газды ұстап тұра алмай, олар ұшып кеткен.

     Юпитердің диаметрі шамамен 144 000 км. Бұл Жердің диаметрінен 12 есе көп, ал массасы Жердің массасынан 300 есе көп. Бірақ Юпитердегі заттардың тығыздығы бөлек. Ол жеңіл заттардан – сутегі мен гелийдің қоспасынан, сондай – ақ метан, аммиак, күкіртті газдар мен басқа да химиялық элементтерден құралған басқа да қосылыстардан тұрады. Юпитердің бетіндегі тартылыс күші Жермен салыстырғанда екі жарым есе көп, сондықтан жоғарғы қабаттардағы қысым Юпитердің қабықшасын сығып, планетаның ішндегі заттардың тығыздығы жоғарылайды.

     Ғылымда бұл планетаның құрылымы газды - сұйықты екендігі белгілі. Оның центрінде ғана тас тәріздес ядро болуы мүмкін. Ол сутегімен қоршалған, ол аса зор қысымның әсерінен электр тогы мен жылуды өткізетін металдық қатты денеге айналған.  Юпитерде Күн сияқты газды-шаңды тұманнан пайда болған. Бұл тұжырымды олардың химиялық құрамы дәлелдейді. Бірақ оның массасы термоядролық реакциялар жүруі үшін жеткіліксіз, әйтпесе біздің планеталық жүйемізде қосарланған жұлдыз болып, бұл жағдайдың Жерде тіршілік пайда болуына қалай әсер ететіні белгісіз еді. Жұлдыз болмаса да Юпитер спектрде инфрақызыл сәулелерді шығарып отырады. Планетаның температурасы орталығына қарай жылжыған сайын жоғарылап, ең орталық нүктесінде бірнеше мыңдаған градусқа жетеді. Жоғары температуралар әсерінен планетаның қабықшасында конвективті қозғалыстар түзіліп, экваторға параллель горизонталды сызықтар пайда болады. Юпитердегі магнит өрісі Күннен бөлінген сәулелерді ұстап, тек қана тіршілікке емес, электронды құралдарға да аса қауіпті зарядталған бөлшектердің ағынын туғызады. “Вояджер” атты автоматты зонд, полярлық шуғылалар мен Юпитер атмосферасындағы көз  шағылыстанатын найзағай жарқылдарын, сондай ақ 400 км/сағ жылдамдықпен жойқын соққан дауылдарды бақылаған. Бұнымен қатар Юпитердің серіктері де анықталған. Олардың бірінде – Иода, серіктің қабығының активтілігі жайлы тұжырым жасауға мүмкіндік беретін сегіз вулкан табылған.


 

А также другие работы, которые могут Вас заинтересовать

34972. Требования к бюджету 39.5 KB
  часто возникает ситуация когда доходы бюджета налоговые и неналоговые не покрывают все необходимые для соответствующего уровня бюджетной системы расходы. В мировой практике существуют следующие виды дефицита госбюджета: циклический дефицит спад деловой активности и сокращение налоговых поступлений. структурный дефицит положительное либо отрицательное сальдо бюджета при наличии естественного уровня безработицы при наличии естественного уровня ВВП при ставках налога и трансфертных платежей определенных законодательством. Источники...
34973. Теория и практика налогообложения 27 KB
  Субъект налога физическое или юридическое лицо которое согласно действующему законодательству обязано уплачивать налог. Объект налога доход или имущество с которого начисляется налог. Ставка налога размер налоговых начислений на единицу объекта налога. Пропорциональные ставки предполагают равное в процентном отношении обложение различных по своему денежному выражению объектов налога.
34974. Фискальная политика, ее цели и инструменты 24.5 KB
  Фискальная политика это политика регулирования правительством прежде всего совокупного спроса. Стимулирующая фискальная политика применяется при спаде имеет целью сокращение рецессионного разрыва выпуска и снижение уровня безработицы и направлена на увеличение совокупного спроса совокупных расходов. Сдерживающая фискальная политика используется при буме имеет целью сокращение инфляционного разрыва выпуска и снижение инфляции и направлена на сокращение совокупного спроса совокупных расходов.
34975. Факторы, обеспечивающие экономический рост 38 KB
  Краткосрочные колебания выпуска в научной литературе обычно относятся к теории деловых циклов и не являются предметом изучения для теории экономического роста. В отличие от экономического развития экономический рост количественный показатель. Экономический рост тесно связан с ростом общего благосостояния: ростом продолжительности жизни качества медицинского обслуживания уровня образования сокращением продолжительности рабочего дня и т.
34976. Теория сравнительных преимуществ 14.31 KB
  Внешнеторговый баланс страны соотношение стоимости товаров экспортированных и импортированных за один и тот же период времени. Внешнеторговый баланс включает фактически оплаченные и осуществленные в кредит товарные сделки. Внешнеторговый баланс составляется по отдельным странам и по группам государств. Торговый баланс имеет сальдо.
34977. НЕСТАБИЛЬНОСТЬ ГЛОБАЛЬНОЙ ЭКОНОМИКИ 25.5 KB
  Демографическая проблема порождена тем что во второй половине XX столетия начался демографический взрыв стремительный рост населения Земли. При этом возникла необычайная асимметрия в его динамике: 80 прироста мирового населения приходится на Азию Африку и Латинскую Америку. Быстрый рост населения в развивающихся странах вызывает ряд серьезных социальноэкономических осложнений. Здесь в национальных границах некоторых государств так быстро увеличивается численность населения что обнаруживаются признаки абсолютного перенаселения...
34978. Основные экономические проблемы общества 38 KB
  Что производить проблема выбора это принятие решений о том какие именно блага какого качества в каком количестве должны быть произведены. Как производить проблема эффективности это принятие решений о том с помощью каких ограниченных ресурсов и их комбинаций с помощью каких технологий будут произведены блага. Для кого производить проблема распределения это проблема связанная с распределением благ: кому достанутся произведенные блага и в каком количестве будет располагать ими экономический субъект. Количество созданных товаров...
34979. Экономика – особая сфера общественной жизни 28.5 KB
  Нормативная экономика это направление в экономической науке основанное на оценочных суждениях относительно того какой должна быть экономика цели экономического развития и экономическая политика. Позитивная экономика означает анализ фактов на основе которых формулируются принципы экономического поведения. Теоретическая экономика учит понимать сложный экономический мир вырабатывает экономический тип мышления.
34980. Функции экономической теории 31 KB
  Практическая рекомендации по совершенствованию текущей экономической ситуации снижению уровня инфляции увеличению валового национального продукта и т. ЭКОНОМИЧЕСКАЯ ПОЛИТИКА система методов инструментов и форм государственного воздействия на социальноэкономические процессы реализующая тот или иной тип экономической стратегии. Сложная структура развитой рыночной экономики требует применения разнообразных инструментов и мер экономической политики.