12283

Точность координат линейных перемещений (точность позиционирования) рабочего органа.

Лабораторная работа

Производство и промышленные технологии

Лабораторная работа № 7 Точность координат линейных перемещений точность позиционирования рабочего органа. Точность координат линейных перемещений точность позиционирования рабочего органа. Цель работы: Изучить методы измерения и ...

Русский

2013-04-25

61 KB

14 чел.

PAGE  1

Лабораторная работа № 7

Точность координат линейных перемещений

(точность позиционирования) рабочего органа.


Точность координат линейных перемещений (точность позиционирования) рабочего органа.

Цель работы: Изучить методы измерения и определить погрешность позиционирования суппорта станка.

Приборы и материалы: Токарный станок, индикатор часового типа мод. ИЧ50.

Вводные замечания.

Погрешность позиционирования является одной из важнейших характеристик измерительных приборов, станков и др. и входит в состав геометрических характеристик, включающих в себя кроме нее:

  •  точность геометрических форм и базовых поверхностей;
  •  точность траекторий перемещения рабочих органов;
  •  точность положения осей вращения;
  •  точность взаимосвязанных линейных и угловых перемещений.

Схемы и способы измерения этих параметров приведены в ГОСТ 22267-76, а допускаемая погрешность их измерения нормируется ГОСТ 8-82 (для металлорежущих станков).

Испытаниям на точность подвергается каждый измерительный прибор и станок, причем объем испытаний должен быть минимальным,  но достаточным для получения необходимой достоверности результатов испытаний и оценки точности.

Т.к. нормируемая точность позиционирования прецизионного оборудования (например, станков классов точности А и С) очень высокая, то при измерениях используется образцовые средства измерений  1 и 2 разряда, а именно концевые и штриховые меры длинны, а также лазерные интерферометры. При этом условия проведения испытаний жестко нормируются, в основном нормируются влияющие физические величины.

Примечания: Влияющая физическая величина – величина, не являющаяся измеряемой данным средством измерения, но оказывающая влияние на результаты измерения этим средством.

Основными влияющими величинами являются:

  1.  Температура окружающей среды: отклонение её от нормальной, т.е. 200С, её изменение и разность температур в двух любых точках ([1], стр.35);
  2.  Параметры вибрации – частота и амплитуда;
  3.  Скорость движения воздуха в рабочем пространстве.

Так, например, для станков классов точности А и С отклонение температуры от нормальной обычно не превышает 0,501,00С.

Поэтому испытания прецизионного оборудования проводятся в термостатированных помещениях, т.е. в помещениях в которых температура с помощью системы автоматического регулирования поддерживается постоянной, а объект измерений устанавливают на специальном виброизолированном развязанном фундаменте. А при испытании контролируется изменение влияющих физических величин.

Т.к. нарушение принципа Аббе существенно влияет на точность измерения, а в измерительных приборах и станках он обычно нарушается, то в технической документации указывается положение линии измерения при испытании на точность позиционирования ([1], стр.55).

При выполнении лабораторной работы исследуются неточный станок (класс его точности ниже класса Н) небольших размеров, то перечисленные требования не соблюдаются.

Погрешность позиционирования оборудования измерительная система которого состоит из винтовой передачи и углоизмерительного прибора (круговой датчик, лимб и др), а именно такая система применена в исследуемом станке, можно определить по формуле.

п=л+х

где л – составляющая погрешности позиционирования, обусловленная неточностью углоизмерительного прибора и внутри шаговой погрешностью винтовой передачи.

х – составляющая погрешности позиционирования, обусловленная накопленной погрешностью винтовой передачи.

Учитывая, что первая имеет в основном циклический характер, отдельно определяют каждую из этих составляющих, а за погрешность позиционирования принимают их сумму.

Порядок выполнения работы.

1. Определение составляющей л погрешности позиционирования, обусловленной неточностью углоизмерительного прибора (лимба) и внутри шаговой погрешностью винтовой передачи:

  1.  Вращая лимб 6 (приложение №2) подвести суппорт 3 вправо до упора измерительного наконечника индикатора 7 в заднюю бабку 4 и создать натяг ~0.5 мм. Поворачивая шкалу индикатора 7, установить его на нуль.

Внимание подход к точке измерения должен осуществляться с одной стороны.

  1.  Поворачивая лимб 6 на один оборот через два деления по индикатору 7 определить действительное перемещение суппорта3 и записать его показания в графу 3 (приложение 3)
    1.  Определить цену деления лимба:

где lu – величина перемещения суппорта 3 за один оборот лимба 6, отсчитанная по индикатору 7.

n - число делений лимба.

Полученное значение цены делений лимба округлить до 0,01 мм.

  1.  Заполнить графу 2.
    1.  Повторить измерения по п. 1.1 – 1.2 еще два раза и заполнить графы 4 и 5.
    2.  Проанализировать результаты трех измерений (графы 3, 4 и 5).
  2.  Определить максимальное изменение показаний индикатора из 3-х измерений при повороте лимба на одно и тоже количество делений (оборотов – при выполнений измерений по п. 2).
  3.  Оценить допустимость этого изменения, приняв, что оно не должно превышать 0,…. мм.
  4.  При не выполнении требования п. 1.6.2 еще раз выполнить измерения по  п. 1.1 – 1.2 (по 2.1 – 2.2 при измерениях по п. 2) и вторично провести анализ, не учитывая измерение при котором не выполняется п. 1.6.2.
    1.  Заполнить графы 6 и 7 и определить составляющую л погрешности позиционирования – она равна наибольшей алгебраической разности значений лi

2. Определение составляющей х погрешности позиционирования, обусловленной накопленной погрешностью винтовой передачи.

  1.  Выполнить п. 1.1;
  2.  Поворачивая лимб на два оборота по индикатору 7 определить действительное значение перемещения суппорта 3  и записать его показания в графу 3 (приложение 4).

Внимание: Величина перемещения суппорта 3не более 50 мм, т.к диапазон измерения индикатора 7 равен 50 мм и дальнейшее перемещение суппорта может привести к поломке индикатора.

  1.  Повторить измерения по п. 2.1 – 2.2 еще два раза и заполнить графы 4 и 5.
  2.  Выполнить п. 1.6 и заполнить графу 6.
  3.  Ввести поправки в результаты измерений на погрешность индикатора:

2.5.1. Пользуясь приложением 5 заполнить графу 7.

2.5.2. Определить действительную величину перемещения Lcpi суппорта с учетом погрешности индикатора и заполнить графу 8.

  1.  Определить составляющую погрешности позиционирования xi обусловленную накопленной погрешностью ходового винта, заполнить графу 9.

3. Определить текущее значение погрешности позиционирования по формуле и  заполнить таблицу:

пi=л+хi

пi мм

0

Lлi мм

0

4. Построить график погрешности позиционирования пi=(Lлi) и определить ее наибольшее значение при перемещении суппорта на любые 5, 10, 20 и 30 мм.


Отчет по лабораторной работе.

Отчет должен содержать отображение каждого пункта с необходимыми обоснованиями, а так же ответы на контрольные вопросы.

Контрольные вопросы.

  1.  Почему нормируются влияющие физические величины при измерении точности позиционирования прецизионного оборудования.
  2.  Какие методы и схемы измерения применяются при определении точности позиционирования?
  3.  Почему в технической документации обычно указывается место положения линии измерения при определении точности позиционирования и как она на нее влияет?
  4.  Что такое нормальная температура и как влияет отклонение температуры окружающей среды от нормального значения температуры?

Список литературы.

  1.  Марков Н. Н., Ганевский Г.М. Конструкция, расчет и эксплуатация контрольно-измерительных инструментов и приборов.
  2.  ГОСТ 22267-76. Схемы и способы измерения геометрических параметров.


Приложение 1

Методы и схем измерения точности линейного позиционирования.

Метод 1 – с помощью отсчетного микроскопа и образцовой меры.

На проверяемый рабочий орган 1 параллельно направлению его перемещения устанавливают штриховую меру 2, а на неподвижном рабочем органе 4 укрепляют микроскоп 3. Пользуясь измерительной системой станка, перемещают проверяемый рабочий орган на заданную длину шагами, с остановками через интервалы, не превышающие 0,02 от длины перемещения и кратные 1 мм. Если длина проверяемого перемещения больше длины штриховой меры, то измерение проводят с перестановкой этой меры.

С помощью микроскопа по штриховой мере определяют фактическую длину перемещения проверяемого рабочего органа.

Погрешность координат линейного перемещения равна наибольшей разности фактической и номинальной длин перемещений.

Метод 2 – с помощью лазерного интерферометра.

Проведение измерения.

Лазерный интерферометр 1 на штативе 3 устанавливают на не подвижной части станка так, чтобы его луч был направлен параллельно направлению перемещения проверяемого органа 4. На перемещаемом органе устанавливают отражатель 2. Проверяемый рабочий орган перемещают на заданную длину, пользуясь измерительной системой станка. По измерительному прибору 5 лазерного интерферометра определяют фактическую длину перемещения проверяемого органа станка.

Погрешность координат линейного перемещения равна наибольшей разности фактической и номинальной длин перемещений.

Приложение 2

1 – Станина;

2 – Передняя бабка;

3 – Суппорт;

4 – Задняя бабка;

5 – Ходовой винт;

6 – Лимб;

7 – Индикатор;

8 – Линейка с ценой деления 1 мм;

9 – Указатель


 

А также другие работы, которые могут Вас заинтересовать

43525. Социальные конфликты современной России 162.5 KB
  Социальная неоднородность общества, различие в уровне доходов, власти, престиже и т.д. нередко приводят к конфликтам. Конфликты являются неотъемлемой частью общественной жизни. Это обуславливает пристальное внимание социологов к исследованию конфликтов.
43526. Многомерная модель базы данных и ее реализация на основе Microsoft SQL Server 479.5 KB
  Поэтому не удивительно то внимание которое сегодня уделяется средствам реализации и концепциям построения информационных систем ориентированных на аналитическую обработку данных. И в первую очередь это касается систем управления базами данных основанными на многомерном подходе МСУБД. Требования к средствам реализации систем оперативной и аналитической обработки данных.
43527. Организация отдыха детей и молодежи: технологии, опыт, проблемы 246.5 KB
  Правильно организованный отдых детей и молодежи обеспечит их разностороннее развитие и формирование личности, духовное, патриотическое, нравственное воспитание, укрепление здоровья, оздоровление организма и восстановление работоспособности. В современной России возникла проблема, касающаяся организации досуга и отдыха детей и молодежи
43528. Анализ и прогнозирование финансового состояния предприятия ООО «Зеркало-инфо» 455 KB
  Объектом исследования курсовой работы является ООО Зеркалоинфо предмет исследования – финансовое состояние предприятия. Цель курсовой работы – исследование финансового состояния предприятия ООО Зеркалоинфо выявление основных проблем финансовой деятельности. В первой главе работы проводится анализ финансового состояния предприятия.
43529. Анализ и прогнозирование финансового состояния предприятия СООО «Эмир Моторс» 467 KB
  Объектом исследования курсовой работы является СООО Эмир Моторс предмет исследования – финансовое состояние предприятия. Цель курсовой работы – исследование финансового состояния предприятия СООО Эмир Моторс выявление основных проблем финансовой деятельности. В первой главе работы проводится анализ финансового состояния предприятия.
43530. Расчет балки и ее характеристик 3.86 MB
  Для указанных схем определить собственные частоты и формы колебаний. Проверить ортогональность собственных форм колебаний. Определить амплитуды вынужденных колебаний под действием силы P(t) = P0cosΩt, приложенной в точке А. Построить эпюру динамических изгибающих моментов при частоте Ω = (γ/mδ)1/2
43531. Системный анализ информационной системы управления бюджетом на предприятии 12.42 MB
  А1 Масштаб предприятия одно здание 100 служащих. А2 Масштаб предприятия четыре филиала в пределах города 500 служащих. А3 Масштаб предприятия один филиал в пределах города и четыре филиала в области 1000 служащих. А4 Масштаб предприятия семь офисов в семи регионах РФ 500 служащих.
43532. Становление системы хореографического образования А.Я.Вагановой 82.91 KB
  Стремясь подчеркнуть особенности русской балетной школы, Ваганова в своей книге нередко сопоставляет ее с французской и итальянской школами. Эти понятия нельзя связывать с современным зарубежным балетом, хотя в отдельных случаях описанные Вагановой приемы еще бытуют в хореографической практике.
43533. Проектирование автоматизированного участка цеха по производству сотового заполнителя 649 KB
  Характеристика изделий получаемых в данном технологическом процессе Технические характеристики сот Краткая характеристика линии для производства непрерывного сотового заполнителя Характеристика склада