123

ПРИЙНЯТТЯ РІШЕНЬ В УМОВАХ НЕВИЗНАЧЕНОСТІ

Практическая работа

Информатика, кибернетика и программирование

Якщо існування функцій розподілу ймовірностей, які характеризують степінь неповноти або неточності інформації про вихідні дані задачі прийняття рішень не гарантується, то таку ситуацію класифікують як прийняття рішень в умовах невизначеності.

Украинкский

2012-11-14

195.5 KB

83 чел.

Практична робота № 6

ПРИЙНЯТТЯ РІШЕНЬ В УМОВАХ НЕВИЗНАЧЕНОСТІ

Мета роботи: засвоїти та навчитись використовувати кількісні критерії для прийняття рішень в умовах невизначеності.

6.1. Короткі теоретичні відомості

Якщо існування функцій розподілу ймовірностей, які характеризують степінь неповноти або неточності інформації про вихідні дані задачі прийняття рішень не гарантується, то таку ситуацію класифікують як прийняття рішень в умовах невизначеності.

Як правило, використовують 4 критерії для прийняття рішень в умовах невизначеності:

  1.  Критерій Лапласа.
  2.  Критерій максимінний (мінімаксний).
  3.  Критерій Севіджа.
  4.  Критерій Гурвіца.

Незважаючи на кількісну природу, критерії відображають суб’єктивну оцінку ситуації.

Дії особи, що приймає рішення, стани системи, стосовно якої приймаємо рішення, описують за допомогою матриці:

...

...

...

...

...

...

...

...

...

де  – стани системи;

– дії особи, що приймає рішення;

– означає прибуток (втрати) при виборі дії  та реалізації стану системи .

Можливі дії особи, що приймає рішення, прийнято називати стратегіями. В умовах невизначеності припускається, що система відносно якої приймаються рішення не переслідує власних інтересів, які протилежні інтересам особи, що приймає рішення. Відсутній конфлікт між особою, що приймає рішення і системою.


6.1.1. Критерій Лапласа

Критерій Лапласа спирається на принцип недостатнього обґрунтування. Оскільки ми можемо обґрунтовувати більшу чи меншу імовірність одного стану системи відносно іншого, то можемо зробити висновок, що всі стани системи рівноймовірні. Користуючись рівноймовірністю станів і критерієм “значення, що очікується”, знайдемо максимум за стратегіями:

– якщо матриця описує прибутки;

– якщо матриця описує витрати.

Приклад 6.1. Підприємство має визначити рівень пропозиції, щоб задовольнити потреби клієнтів на свята, які наступають. Число клієнтів невідомо, але відомо що їх буде

=200; =250; =300; =350.

Для кожного з цих значень є найкращий рівень пропозиції (з точки зору затрат). Відхилення від цього значення приводить до більших витрат завдяки неповного задоволення попиту чи надмірної пропозиції. Вихідні дані зведені у таблиці, в якій

–  – кількість клієнтів;

–  – рівні пропозиції.

5

10

18

25

8

7

8

23

21

18

12

21

30

22

19

15

Розрахуємо очікувані затрати для кожного з рівнів пропозиції:

= 1/4(5 + 10 + 18 + 25) = 14,5;

= 1/4(8 + 7 + 8 + 23) = 11,5;

= 1/4(21 + 18 + 12 + 21) = 18,0;

= 1/4(30 + 22 + 19 + 15) = 21,5.

Знайдемо мінімальне значення. За критерієм Лапласа найкращим рівнем пропозиції буде , який забезпечує рівень витрат 11,5.

6.1.2. Критерій мінімаксу (максиміну)

Цей критерій найпесимістичніший. Користуючись ним ми вважаємо, що ситуація в системі складається найгіршим для нас чином і за рахунок обрання стратегії ми намагаємось забезпечити намагаємось покращити найгірший для нас результат. У випадку прибутку ми максимізуємо мінімальний з прибутків (максимін), а у випадку втрат – мінімізуємо максимальні з можливих втрат (мінімакс).

Для прибутку .

Для втрат .

Приклад 6.2 (для втрат).

5

10

18

25

25

8

7

8

23

23

21

18

12

21

21

30

22

19

15

30

Тобто за мінімаксним критерієм обирається значення .

6.1.3. Критерій Севіджа

Мінімаксний критерій іноді може привести до нелогічних висновків. Класичним прикладом є матриця втрат:

11000

90

10000

10000

Застосування мінімаксу дає , але в будь-якому випадку втрачаємо 10000; при  існує імовірність, що стан буде  і тоді ми втратимо лише 90. Критерій Севіджа виправляє становище введенням нової матриці втрат, яку визначають наступним чином:

              

Перша альтернатива в даній формулі використовується якщо вихідна матриця є матрицею прибутку, а друга альтернатива – для матриці втрат.

Ця матриця має назву “матриця жалкування”. Застосуємо критерій Севіджа до прикладу:

1000

0

0

9900

Виходячи з мінімаксу обираємо .

Зауваження: незалежно від того, що визначає вихідна матриця (втрати чи прибуток), матриця жалкування дає завжди втрати, тому для вибору дії з матриці завжди використовують мінімаксний критерій.

6.1.4. Критерій Гурвіца

Цей критерій за допомогою коефіцієнтів, які обираються суб’єктивно, встановлює точку зору особи, що приймає рішення, на ситуацію: від тотального оптимізму до тотального песимізму.

Для прибутку .

Для втрат        .

Тут   [0,1] – коефіцієнт оптимізму:

при =0 – тотальний песимізм;

при =1 – тотальний оптимізм;

при 1/2 – відсутність схильності в той чи інший бік.

6.2. Порядок виконання роботи

  1.  Ознайомитись з теоретичними відомостями.
    1.  Згідно варіанту розглянути платіжну матрицю (матрицю доходів). Ймовірності станів системи не визначені. Порівняти розв’язки, отримані при наступних критеріях:

а) Лапласа;

б) Максиміна;

в) Севіджа;

г) Гурвіца ().

  1.  Оформити звіт з практичної роботи.

6.3. Варіанти індивідуальних завдань

Варіанти індивідуальних завдань для вирішення задачі п. 6.2.2 задані у табл. 6.1.

Таблиця 6.1

Вихідні дані для вирішення задачі п. 6.2.2

Варіант

1

15

10

0

-6

17

3

14

8

9

2

1

5

14

20

-3

7

19

10

2

0

2

5

4

0

-6

7

-3

6

3

-9

12

10

8

17

20

-3

12

-9

21

-2

0

3

51

-10

-10

-7

17

-3

14

9

14

27

16

6

-14

26

-3

-7

20

15

9

-10

4

10

31

0

-6

-17

-23

14

-8

9

22

19

25

34

-20

-3

37

18

10

22

-30

5

-15

10

-10

26

17

32

24

-8

-9

2

10

-5

14

20

-3

27

-19

10

-2

10

Закінчення табл. 6.1

Варіант

6

21

-10

20

-6

17

-3

14

38

-15

12

12

-5

15

20

-3

-7

19

-16

-3

11

7

15

10

-23

-6

17

-3

-14

8

9

2

1

5

-14

20

-3

7

-19

14

1

32

8

22

9

-20

14

-17

-3

14

-8

12

29

-3

-6

14

21

-3

7

19

10

2

-30

9

21

-10

-3

6

17

12

14

-8

9

40

-31

5

15

20

-33

-8

19

10

4

2

10

15

10

2

-6

19

3

15

9

9

2

1

7

14

23

-3

7

20

10

3

-10

6.4. Зміст звіту

  1.  Назва та мета роботи.
    1.  Короткі теоретичні відомості.
      1.  Умови задачі та її розв’язок.
      2.  Короткі висновки.


6.5. Контрольні запитання

6.5.1. Яку ситуацію класифікують як прийняття рішень в умовах невизначеності?

6.5.2. Яку точку зору особи, що приймає рішення в умовах невизначеності, відображає: а) критерій Лапласа; б) критерій мінімаксу (максиміну); в) критерій Севіджа; г) критерій Гурвіца?

6.5.3. Яку інформацію містить матриця прибутків (втрат)?

PAGE 69


EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

9195. Цели, содержание и структура непрерывного образования 16.62 KB
  Цели, содержание и структура непрерывного образования Образование - процесс и результат усвоения человеком систематизированных знаний, умений и навыков, определенный уровень интеллектуального и эмоционального развития формирование мировоззрения...
9196. Эмоционально-волевая сфера личности 27.6 KB
  Эмоционально-волевая сфера личности Структура конспекта: Понятие чувства и эмоции. Их физиологические основы Формы эмоций и высших чувства Понятие воля. Его физиологические основы и основные характеристики Структура вол...
9197. Усі уроки української літератури 5 клас 3.75 MB
  ПЕРЕДМОВА Чи люблять, чи хочуть діти вчитися? Чи цікаво їм на уроках? Яких уроків вони чекають? Якими задоволені? Звичайно, на ці та аналогіч­ ні питання однозначно відповісти важко. Проте зрозуміло: сірі, одно­ манітні, нецікаві уроки викличуть не ...
9198. Усі уроки української мови 8 клас 7.98 MB
  Усі уроки української мови у 8 класі розроблено відповідно до програми для загальноосвітніх навчальних закладів Українська мова. 5—12 класи (Г. Т. Шелехова, В. І. Тихоша, А. М. Корольчук, В. І. Но- восьолова, Я. І. Остаф; за ред Л. В. Скуратівського).
9199. ТЕОРІЯ ЙМОВІРНОСТЕЙ 325.36 KB
  ТЕМА 19. ТЕОРІЯ ЙМОВІРНОСТЕЙ Теорія ймовірностей - математична наука, яка вивчає закономірності випадкових явищ. Фундаментальними поняттями теорії ймовірностей є випадкова подія та випадковий експеримент (випробування). Випробування (випадковий...
9200. Урок географии в 8 классе Реки России 46.5 KB
  Урок географии в 8 классе Реки России География России. Природа и население. Книга первая. Под редакцией А. И. Алексеева. Учитель географии МОБУ Иссадская основная общеобразовательная школа Волховского муниципального района Румянцева Любовь Вас...
9201. Цитология - наука о клетке 86 KB
  Цитология - наука о клетке. Основные положения клеточной теории (2.1.1). Краткие сведения из истории изучения клетки (2.1.2).Прокариоты и эукариоты (2.1.3) Цели: Познакомить учащихся с проблемами цитологии и её методами. Обобщить и ...
9202. Химическая организация клетки. Углеводы, липиды 122.5 KB
  Химическая организация клетки. Углеводы, липиды. Неорганические химические элементы и вещества в клетке, их роль. Органические вещества клетки и живых организмов. Углеводы и липиды. Цели: Углубить знания о химическом с...
9203. Белки, аминокислоты. Нуклеиновые кислоты 675 KB
  Белки, аминокислоты. Нуклеиновые кислоты. Структура белков, функции белков в клетке, аминокислоты. Нуклеиновые кислоты. Тип урока - изучение нового материала. Цели: Рассмотреть особенности строения белковых молекул, познакомиться с функциями белков...