12358

Определение отношения заряда электрона к его массе методом магнетрона

Лабораторная работа

Физика

Лабораторная работа № 19 Определение отношения заряда электрона к его массе методом магнетрона 1. Цель работы: измерение удельного заряда |e|/m электрона. 2. Методика измерений Существуют различные методы определения отношения |e|/m в основе которых лежат результа...

Русский

2013-04-26

245 KB

105 чел.

Лабораторная работа № 19

«Определение отношения заряда электрона к его массе методом

магнетрона»

1. Цель работы: измерение удельного заряда (|e|/m) электрона.

2. Методика измерений

Существуют различные методы определения отношения |e|/m, в основе которых лежат результаты исследования движения электрона в электрическом и магнитном полях. Один из них – метод магнетрона. Называется он так по тому, что конфигурация полей в нем напоминает конфигурацию полей в магнетронах – генераторах электромагнитных колебаний.

Сущность метода состоит в следующем: специальная двухэлектродная электронная лампа, электроды которой представляют собой два коаксиальных цилиндра, помещается внутри соленоида так, что ось лампы совпадает с осью соленоида. Электрическое поле между катодом (внутренний цилиндр) и анодом (внешний цилиндр) имеет радиальное направление. Электроны, вылетающие из катода лампы, при отсутствии тока в соленоиде движутся радиально к аноду. При протекании тока по соленоиду в лампе создается магнитное поле, параллельное оси лампы, и на электроны начинает действовать сила Лоренца

, (19.1)

где е – заряд электрона,  – скорость электрона,  – индукция магнитного поля. Под действием этой силы, направленной в каждый момент времени перпендикулярно вектору скорости, траектория электронов искривляется (рис.19.1а).

При определенном соотношении между скоростью электрона и индукцией магнитного поля электроны перестают попадать на анод, и ток в лампе прекращается.

Под действием этой силы, направленной в каждый момент времени перпендикулярно вектору скорости, траектория электронов искривляется (рис.19.1а). При определенном соотношении между скоростью электрона и индукцией магнитного поля электроны перестают попадать на анод, и ток в лампе прекращается.

Электрическое поле, имеющее только радиальную компоненту, действует на электрон с силой, направленной по радиусу от катода к аноду. Магнитная сила, действующая на электрон, не имеет составляющей, параллельной оси Z. Поэтому электрон, вылетевший из катода без начальной скорости (начальные скорости электронов, определяемые температурой катода, много меньше скоростей, приобретаемых ими при движении в электрическом поле лампы), движется в плоскости, перпендикулярной оси Z.

Рис.19.1. Траектории электронов в магнетроне.

Момент импульса Lz электрона относительно оси Z

, (19.2)

где  – составляющая скорости, перпендикулярная радиусу .

Момент М сил, действующих на электрон, относительно оси Z определяется только составляющей магнитной силы, перпендикулярной . Электрическая сила и составляющая магнитной силы, направленные вдоль радиуса , момента относительно оси Z не создают. Таким образом:

, (19.3)

где  – радиальная составляющая скорости электрона. Согласно уравнению моментов

 (19.4)

Проектируя на ось Z, получим

 (19.5)

или

 (19.6)

Интегрируем уравнение (19.6):

. (19.7)

Константу найдем из начальных условий: при r=rк (где гк — радиус катода) v=0. Тогда:

 (19.8)

и . (19.9)

Кинетическая энергия электрона равна работе сил электрического поля:

 (19.10)

где U – потенциал точки поля относительно катода, в которой находится электрон.

Подставляя в (19.10) значение из (19.9), получаем

. (19.11)

При некотором значении индукции магнитного поля Bкр, которое называют критическим, скорость электрона вблизи анода станет перпендикулярной радиусу r, т.е. при r=rа vr=0. Тогда уравнение (19.11) примет вид

, (19.12)

где Uа – потенциал анода относительно катода (анодное напряжение), rа – радиус анода.

Отсюда находим выражение для удельного заряда электрона

. (19.13)

Индукция магнитного поля соленоида, длина L которого соизмерима с диаметром D, находится по формуле

, (19.14)

где N – число витков соленоида, Iкр ток в соленоиде, L – длина соленоида, D – диаметр его витков.

Таким образом, экспериментально определив Вкр, можно вычислить величину e/m. Для нахождения Вкр в лампе следует установить разность потенциалов между анодом и катодом и, включив ток в соленоиде, постепенно наращивать его, что увеличивает магнитное поле в лампе.

Если бы все электроны покидали катод со скоростью, равной нулю, то зависимость величины анодного тока от величины индукции магнитного поля имела бы вид, показанный на рис.19.2 (пунктирная линия). В этом случае при B<Bкр все электроны, испускаемые катодом, достигали бы анода, а при В>Вкр ни один электрон не попадал бы на анод.

Однако, некоторая неаксиальность катода и анода, наличие остаточного газа в лампе, падение напряжения вдоль катода и т.д. приводят к тому, что критические условия достигаются для разных электронов при различных значениях В. Все же перелом кривой останется достаточно резким и может быть использован для определения Вкр.

Рис.19.2. Зависимость анодного тока от магнитной индукции.

3. Экспериментальная установка.

Для определения удельного заряда электрона предназначена кассета ФПЭ-03, к которой подключается источник питания ИП и измерительный прибор В7-58/2, как это показано на рис.19.3.

Геометрические размеры соленоида:

- длина L=1705 мм;

- число витков N=10002; диаметр D=605 мм.

- радиус ra=8,000,10 мм.

Радиус катода считать малым rк<<rа, т.е. rк/ra→0.

Рис.19.3. Схема экспериментальной установки.

4. Порядок выполнения работы.

4.1. Собрать электрическую схему установки (рис.19.3,19.4). Для этого подсоединить два гнезда на лицевой панели кассеты ФПЭ-03 с соответствующими гнездами измерительного прибора В7-58/2 для измерения тока. Установить предел измерения прибора 200 A постоянного тока.

4.2. Установить ручкой 3 напряжение Uа= 40 В по вольтметру ИП. Дать разогреться катоду в лампе в течении 5-10 минут

Рис.19.4. Электрическая схема экспериментальной установки.

4.3. Ручкой 2 изменять ток в соленоиде от минимального через 0,1 А при постоянном анодном напряжении. Снять сбросовую характеристику, т.е. зависимость анодного тока Iа от тока в соленоиде Ic Значения анодного тока Iа, определяемые по прибору В7-58/2, и значения тока в соленоиде, определяемые по показаниям амперметра ИП, занести в табл.19.1.

4.4. Повторить п.п. 2 и З при трех других значениях анодного напряжения (в диапозоне 40-100 В). Результаты измерений занести в табл.19.1.

Таблица 19.1.

Ua=40 В

Ua=…В

Ua=…В

Ua=…В

Ic, А

Iа, мкА

Ic, А

Iа, мкА

Ic, А

Iа, мкА

Ic, А

Iа, мкА

4.5. Для каждого значения анодного напряжения построить сбросовую характеристику, откладывая по оси ординат значения анодного тока Iа, а по оси абсцисс – значения тока в соленоиде Iс. Для нахождения критического значения тока в соленоиде Iкр найти точку перегиба на участке спада сбросовой характеристики (как показано на рис.19.5).

Рис.19.5. Критическое значение тока в соленоиде.

Занести полученные значения Iкр в табл.19.2.

Таблица 19.2.

Uа, В

Iкр, А

B2кр, (мТл)2

|e|/m, Кл/кг

4.6. Для каждого критического значения тока в соленоиде Iкр, по формуле (19.14) рассчитать индукцию магнитного поля Вкр. Занести в табл.19.2 квадрат найденных величин.

4.7. Построить график зависимости B2кр=f(Uа). Из выражения (19.13) видно, что эта зависимость прямо пропорциональная вида y=kx. По угловому коэффициенту полученной прямой определить удельный заряд электрона |e|/m.

4.8. Сравнить полученное значение |e|/m с табличным.

4.9. Вычислить относительную погрешность полученной величины |e|/m.

5.Контрольные вопросы.

5.1. Электрический ток в вакууме. Термоэлектронная эмиссия.

5.2.Магнитное поле соленоида.

5.3.Движение заряженных частиц в электрических и магнитных полях.

5.4. В чем суть метода магнетрона для определения отношения |e|/m?

5.5. Будет ли влиять на величину Вкр изменение направления тока соленоида на противоположное?

5.6. Зависит ли величина |e|/m от величины анодного напряжения?

Рекомендуемая литература.

  1.  Детлаф А.А., Яворский Б.М. Курс физики: Учеб. пособие для втузов.– 2-е изд., испр. и доп.– М.: Высш. шк., 1999.– 718 с.: ил.
  2.  Савельев И.В. Курс общей физики: Учеб. пособие. В 3-х т. Т.2. Электричество и магнетизм. Волны. Оптика. – 3-е изд., испр. –М.: Наука. Гл. ред. физ.-мат. лит., 1988. 496 с., ил.
  3.  Трофимова Т.И. Курс физики: Учеб. пособие для вузов.– 5-е изд., стер.– М.: Высш. шк., 1998.– 542 с.: ил.

5

  1.  

 

А также другие работы, которые могут Вас заинтересовать

41894. Списки. Фильтрация данных. Связывание таблиц. Лабораторные работы в MS Excel 2007 1.43 MB
  Введите таблицу приведенную на рис. Рис. Введите таблицу представленную на рис. Активизируйте лист с исходной таблицей рис.
41895. ПРИНЦИПЫ ПРОГРАММНОГО УПРАВЛЕНИЯ ЭВМ. КОМАНДЫ MS DOS 683.51 KB
  В зависимости от варианта ответа DOS реагирует на возникшую ошибку поразному: аварийное завершение выполнения программы или команды выдавшей запрос; R повтор операции; F завершение выполнения операции и возврат кода ошибки; программа продолжает выполняться. Временный приостанов выполнения команды или программы например вывода информации на экран дисплея осуществляется нажатием клавиши Puse. Общие положения Тестовые программы используются для идентификации конфигурации компьютера его системных ресурсов а также для его диагностики...
41896. Emissions of combustive-lubricating materials stocks 32.01 KB
  146; Gross emissions: M=PT103 ton yer P emission per hour P is P1 or P2 T ctive time of source which cn be clculted for litting up: T=V p103 hour yer Where p= 300 m3 hour for gs; p=30 m3 hour for petrol; p=30 m3 hour for diesel fuel Min chrcteristics of wsters ccording to prgrph 17 of the lw On wstes producer determines composition nd chrcteristics of production wstes nd degree of their dnger for environment nd mn's helth. The dnger degree is coordinted with executive uthorities. Degree of dnger is chrcterized by the clss of...
41897. ДОСЛІДЖЕННЯ ПРОГРАМНОГО СЕРЕДОВИЩА РОЗРОБКИ ТА НАЛАГОДЖЕННЯ ПРИКЛАДНОГО ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ СИСТЕМ КЕРУВАННЯ ТА ОБРОБКИ ІНФОРМАЦІЇ, ВИКОНАНИХ НА БАЗІ МІКРОПРОЦЕСОРІВ СІМЕЙСТВА MCS-51 2.48 MB
  Провести асемлеювання програми. Текст програми.1 ; надання імені vr_3 першому біту регістру RM 20H ; ; Програма ; ORG H ; адреса вектора розгалуження після початкового пуску RJMP _BEGIN ; мікропроцесора ; ORG H...
41898. ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 251.24 KB
  Метод Ньютона. В качестве начального приближения здесь выбирается правый или левый конец отрезка в зависимости от того в котором выполняется достаточное условие сходимости метода Ньютона вида: Условие выполняется на обоих концах отрезка следовательно в качестве начального приближения разрешено выбрать любой из них. Рабочая формула метода Ньютона для данного уравнения запишется так: Условия выхода итерационного процесса аналогичны условиям метода простых итераций: и . Модифицированный метод Ньютона.
41899. ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД НЬЮТОНА 213.45 KB
  Цель работы: научиться решать системы нелинейных уравнений СНУ методом простых итераций МПИ и методом Ньютона с помощью ЭВМ. Изучить МПИ и метод Ньютона для решения систем нелинейных уравнений. На конкретном примере усвоить порядок решения систем нелинейных уравнений МПИ и методом Ньютона с помощью ЭВМ. Построить рабочие формулы МПИ и метода Ньютона для численного решения системы при начальном приближении: .
41900. ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ 244.14 KB
  Цель работы: научиться решать системы линейных алгебраических уравнений СЛАУ методом простых итераций МПИ и методом Зейделя с помощью ЭВМ. Изучить метод простых итераций и метод Зейделя для решения СЛАУ. Сравнить скорости сходимости метода простых итераций и метода Зейделя. Построить рабочие формулы МПИ и метода Зейделя для численного решения системы.
41901. Знакомство со средой разработки Oracle Application Express. Создание исходного приложения 1.09 MB
  Знакомство со средой разработки Orcle ppliction Express. Каковы основные компоненты среды разработки Orcle ppliction Express ppliction Builder собственно среда разработки webстраниц и бизнесправил. Что такое рабочая область workspce Рабочая область workspce это виртуальная частная база данных которая позволяет множеству пользователей работать с одной инсталляцией Orcle ppliction Express обеспечивая при этом приватность пользовательских объектов и приложений.
41902. Построение графиков в среде программирования MATLAB 354.21 KB
  Цель работы: научиться строить графики различных типов в программной среде MATLAB. Изучить основные операторы построения графиков в среде программирования MATLAB; освоить принципы построения различных типов графиков в среде программирования MATLAB.