12362

Исследование характеристик поперечного датчика Холла

Лабораторная работа

Физика

Лабораторная работа № 15 Исследование характеристик поперечного датчика Холла 1. Цель работы: Исследование характеристик поперечного датчика Холла 2. Эффект Холла. Эффект Холла заключается в том что если пропустить через металлическую или полупроводниковую пла

Русский

2013-04-26

266.5 KB

6 чел.

Лабораторная работа № 15

«Исследование характеристик поперечного датчика Холла»

1. Цель работы: Исследование характеристик поперечного датчика Холла

2. Эффект Холла.

Эффект Холла заключается в том, что если пропустить через металлическую или полупроводниковую пластину (рис.15.1.) электрический ток I и поместить ее в магнитное поле с индукцией , направленной перпендикулярно току, то в пластинке между параллельными току и магнитному полю гранями возникает разность потенциалов, называемая разностью потенциалов Холла.

В классической теории проводимости эффект Холла объясняется тем, что в магнитном поле на движущиеся электрические заряды действует сила Лоренца, величина и направление которой определяются векторным уравнением:

=e , (15.1)

где  – индукция магнитного поля,  – скорость движения зарядов, е – заряд носителей тока с учетом знака («+» – для дырочной проводимости, «– » – для электронной).

Рис.15.1. Взаимная ориентация векторов тока I, индукции магнитного поля  и напряженности электрического поля Холла .

Электрическое поле Холла

Ехолл=v B (15.2)

связано с ЭДС Холла εх или с холловской разностью потенциалов Uх соотношением

 εх=Uххоллd=vBd. (15.3)

Так как плотность тока равна

 j = env, (15.4)

где n – концентрация носителей тока, то сила тока в пластине равна:

 I = jbd = envbd,  (15.5)

что позволяет записать:

v = ;        εх = ; (15.6)

Экспериментальное определение ЭДС Холла проводят на образце с заданной толщиной b при фиксированном токе через образец. При этом полученное значение ЭДС Холла рассчитывают на единицу толщины образца и единицу силы тока, т.е. определяют величину

 εх пр=εхb/I=RxB, (15.7)

которую называют удельной или приведенной ЭДС Холла.

Коэффициент пропорциональности Rx=1/(en) является характеристикой изучаемого вещества и называется постоянной Холла. Выражение для постоянной Холла получено в предположении, что все носители тока имеют одинаковую скорость движения. Не учтено, следовательно, что при движении в реальном веществе они испытывают столкновения и рассеиваются на примесных атомах и на колебаниях решетки. Учет рассеяния носителей тока в веществе приводит к несколько исправленным выражениям для постоянной Холла, вид которых зависит от механизма рассеяния. Так, с учетом рассеяния на колебаниях решетки, для постоянной Холла получено выражение

Rx=. (15.8)

Отсюда:

n==. (15.9)

При экспериментальном определении ЭДС Холла следует обратить внимание на то, что наряду с эффектом Холла могут наблюдаться некоторые другие эффекты: гальваномагнитный, термомагнитный и т.п. Для исключения влияния побочных эффектов используют свойство четности этих эффектов, т.е. их независимость от направления магнитного поля. Эффект Холла же является нечетным. Для того, чтобы исключить побочные эффекты и определить истинное значение εх, напряжение между холловскими контактами измеряют при двух противоположных направлениях магнитного поля.

Если наряду с постоянной Холла определить удельное сопротивление полупроводника, то можно вычислить подвижность носителей тока. Подвижностью μ носителей тока называется та их дрейфовая скорость, которую они приобретают в электрическом поле с напряженностью 1 В/м. Если носители тока движутся в поле с напряженностью , то их дрейфовая скорость равна:

; (15.10)

По закону Ома , (15.11)

где σ – удельная электропроводимость полупроводника, которая выражается через подвижность:

 σ=enμ. (15.12)

Отсюда:

 μ====0,85. (15.13)

Для определения удельного электрического сопротивления ρ полупроводника измеряют электрическое сопротивление между двумя контактами, расположенными на длинной поверхности образца на расстоянии l:

 ρ=. (15.14)

Для установления типа примесной проводимости изучаемого полупроводника, т. е. знака носителей тока, необходимо определить знак измеряемой ЭДС Холла при выбранных направлениях тока через образец I и магнитного поля .

3. Магнитные поля токовых систем.

Магнитное поле постоянных токов изучалось Био и Саваром, окончательная формулировка найденного ими закона принадлежит Лапласу. Поэтому закон, с помощью которого рассчитывается магнитное поле постоянных токов, носит название закона Био-Савара-Лапласа.

Основная трудность, связанная с формулировкой такого закона, состоит в том, что магнитное поле зависит не только от величины тока, но и от формы проводника.В электростатике поле распределенных зарядов  также зависит от их расположения в пространстве. Однако там это поле можно представить как сумму полей точечных зарядов d, причем  поле точечного заряда может быть непосредственно выделено и изучено. В случае постоянных токов также можно полагать, что результирующее поле  есть сумма полей d, созданных отдельными элементами тока. Но измерить и изучить поле одного изолированного элемента постоянного тока невозможно.

Единственный путь преодоления этой трудности состоит в предположении, что в любой точке пространства магнитное поле , создаваемое всем током в целом, складывается из полей d, создаваемых элементами этого тока в данной точке. Для магнитных полей, как и для электрических, имеет место принцип суперпозиции (наложения), и полная индукция магнитного поля дается векторной суммой (или интегралом) элементарных магнитных индукций:

=. (15.15)

По закону Био-Савара-Лапласа магнитное поле dB, создаваемое элементом тока  на расстоянии r от него, обратно пропорционально квадрату расстояния и прямо пропорционально величине элемента тока и синусу угла между векторами  и :

. (15.16)

Здесь =Гн/м – магнитная постоянная,  – магнитная проницаемость среды.

Таким образом, для решения основной задачи магнитостатики – нахождения магнитного поля, создаваемого произвольной системой проводников с токами, требуется следующая последовательность действий:

- рассчитать исходную систему проводников с токами (источниками поля) на элементы тока I;

- вычислить индукцию магнитного поля  в точке наблюдения от каждого из элементов тока по формуле (15.16);

- вычислить результирующую индукцию  по формуле (15.15).

Индукции магнитного поля, создаваемого некоторыми простейшими системами проводников с токами приведены ниже (рис.15.2).

Рис.15.2. Магнитные поля простейших токовых систем.

3.1. Магнитное поле прямолинейного проводника с током (рис.15.2а).

 B=. (15.17)

Для бесконечно длинного проводника с током:

 B=. (15.18)

3.2. Магнитное поле кругового витка с током в произвольной точке оси витка (рис.15.2б).

 B=I. (15.19)

Для центра кругового витка:

 B=I. (15.20)

3.3. Магнитное поле соленоида (рис.15.1в)

 B=. (15.21)

Для бесконечно длинного соленоида:

 B=, (15.22)

где n – число витков на единицу длины соленоида.

4. Описание экспериментальной установки.

Для изучения эффекта Холла используются промышленные датчики Холла типа ДХК-0,5. Размеры датчиков: d=l=500,01,0 мкм, b=12,01,0 мкм. Схема экспериментальной установки представлена на рис.15.3.

В лабораторных работах используется магнитное поле, создаваемое либо токовой системой (соленоид, катушка с током), либо постоянным магнитом. Для поперечного датчика в качестве источника магнитного поля используется две кольцевые катушки, образующие общую систему – катушки Гельмгольца (соосные, расположенные на небольшом расстоянии друг от друга).

Для создания магнитного поля используется основной выход генератора, работающего в режиме источника постоянного напряжения или тока. Ток датчика регулируется потенциометром R1 и измеряется амперметром – А. ЭДС Холла измеряется вольтметром. Ток в катушке L измеряется с помощью мультиметра по падению напряжения на сопротивлении R0=1,000,05Ом. Погрешность показаний мультиметра составляет 1 % от его показаний.

Рис.15.3. Включение датчика Холла и контура для создания поля.

5. Порядок выполнения работы:

5.1. Собрать электрическую схему, приведенную на рис.15.3. В качестве источника магнитного поля L использовать две катушки, включенные последовательно и расположенные соосно на расстоянии, приблизительно равном их радиусу.

5.2. Поместить поперечный датчик Холла на оси катушек приблизительно  посредине между ними.

5.3. Изменяя ток, пропускаемый через датчик Холла Iд и ток соленоида Iс измерить значения ЭДС Холла при двух противоположных направлениях магнитного поля. Результаты измерений внести в табл.15.1.

Таблица 15.1. Напряжение Холла U23, мВ.

Ток датчика, мА

Ток катушек, А

0

+ 0,5

– 0,5

U23 cр

+ 0,9

– 0,9

U23 cр

0

1,0

2,0

3,0

4,0

5.4. По результатам измерений рассчитать значения магнитных полей и постоянной Холла:

;           Rx=.

Результаты расчетов внести в табл.15.2.

Таблица 15.2. Расчетные значения магнитной индукции и постоянной Холла.

Ток датчика, мА

Постоянная Холла Rx, Омм/Тл.

В =

В =

Rx ср

1,0

2,0

3,0

4,0

Данные для расчета: Nc = 8002 – число витков двух катушек, lc – расстояние между их центрами.

5.5. При выключенном магнитном поле измерить удельное сопротивление полупроводникового материала датчика Холла. Результаты измерений и расчетов внести в табл.15.3.

Таблица 15.3.

Ток датчика, мА

Напряжение U14, В

Сопротивление датчика, Ом

Удельное сопротивление, Омм

2,0

4,0

5.6. По средним значениям постоянной Холла и удельного сопротивления рассчитать концентрацию носителей тока в полупроводнике и их подвижность.

6. Контрольные вопросы.

6.1. Закон Био-Савара-Лапласа.

6.2. Расчет магнитных полей простейших токовых систем (прямолинейный ток, ось кругового витка, соленоид).

6.3. Движение заряженных частиц в электрических и магнитных полях.

6.3. Эффект Холла.

Рекомендуемая литература.

  1.  Детлаф А.А., Яворский Б.М. Курс физики: Учеб. пособие для втузов.– 2-е изд., испр. и доп.– М.: Высш. шк., 1999.– 718 с.: ил.
  2.  Савельев И.В. Курс общей физики: Учеб. пособие. В 3-х т. Т.2. Электричество и магнетизм. Волны. Оптика. – 3-е изд., испр. –М.: Наука. Гл. ред. физ.-мат. лит., 1988. 496 с., ил.
  3.  Трофимова Т.И. Курс физики: Учеб. пособие для вузов.– 5-е изд., стер.– М.: Высш. шк., 1998.– 542 с.: ил.

6

  1.  

 

А также другие работы, которые могут Вас заинтересовать

80685. ПРОГНОЗИРОВАНИЕ СПРОСА 118.5 KB
  Прогнозирование спроса на основе статистической информации 3. Прогнозирование спроса на основе временной информации Спрос как объект прогнозирования Прогнозы спроса являются составной частью разработки планов развития отдельных отраслей и планирования размеров отдельных товаров. Прогнозные расчеты одна из составляющих процесса выявления общественных и личных потребностей для планирования структуры общественного производства определяют какое влияние на размеры спроса и его структуру окажет изменение денежных доходов населения цен товаров...
80687. Задачи анализа временных рядов 193.5 KB
  Исходные данные, которыми располагает экономист в своих исследованиях, представлены в виде динамических (временных рядов). Такие ряды описывают изменение некоторой характеристики во времени. Каждый член (уровень) такого ряда связан с соответственным моментом времени или временным интервалом. Показатели временных рядов оформляются под совокупным влиянием множества факторов и в том числе различного рода случайностей.
80688. Основы корреляцоинно-регрессионного анализа 116 KB
  Общая схема расчетов корреляционных моделей следующая: логический отбор факторов независимых переменных оказывающих существенное влияние на изучаемую величину зависимую переменную; выбор формы связи зависимой переменной с отобранными факторами и построение соответствующих уравнений регрессии; расчет параметров коэффициентов уравнений регрессии; расчет коэффициентов корреляции и проверка правильности произведенного отбора факторов и принятой формы связи; определение значимости существенности коэффициентов регрессии и корреляции и...
80689. Налоги на имущество предприятий 42 KB
  Плательщики налога Плательщиками налога на имущество являются: предприятия учреждения включая банки и другие кредитные организации и организации в том числе с иностранными инвестициями считающиеся юридическими лицами по законодательству Российской Федерации; филиалы и другие аналогичные подразделения указанных предприятий учреждений и организаций имеющие отдельный баланс и расчетный текущий счет; компании фирмы любые другие организации включая полные товарищества образованные в соответствии с законодательством иностранных...
80690. Налоги фирмы и ее взаимоотношения с налоговыми органами 115.5 KB
  Особую значимость в финансовой жизни фирмы имеют взаимоотношения с налоговыми органами и другими органами аналогичного значения по поводу налогов и сборов в кассу государства и местных органов. Во всех странах эти отношения появляются вместе с рождением Фирмы и сопровождают ее на всем протяжении жизни. Двойственный характер налоговых отношений сформировал у налогоплательщиков определенный стиль поведения по отношению к налогам базирующийся на следующих принципах: налоги надо платить поскольку это своего рода финансовая повинность то есть...
80691. Налоги, исчисляемые от прибыль, остающейся в распоряжении предприятия 53 KB
  Плательщики налога Юридические лица эмитенты ценных бумаг Объект налогообложения номинальная сумма выпуска ценных бумаг акционерных обществ осуществляющих первичную эмиссию ценных бумаг; номинальная сумма выпуска ценных бумаг акционерных обществ осуществляющих увеличение уставного капитала на величину переоценок основных фондов производимых по решению Правительства РФ. Ставка налога 08 Сроки уплаты Сумма налога уплачивается плательщиком одновременно с представлением документов на регистрацию эмиссии. ЛЬГОТЫ по срокам...
80692. Налоги, исчисляемые от прибыли 49.5 KB
  Общие положения Плательщики налога предприятия и организации в том числе бюджетные являющиеся юридическими лицами по законодательству РФ включая созданные на территории РФ предприятия с иностранными инвестициями а также международные объединения и организации осуществляющие предпринимательскую деятельность; филиалы и другие обособленные подразделения предприятий и организаций имеющие отдельный баланс и расчетный текущий счет; коммерческие банки различных видов включая банки с участием иностранного капитала получившие лицензию...
80693. Налоги, сборы и платежи, включаемые в себестоимость продукции (работ, услуг) 95.5 KB
  Обязательные платежи во внебюджетные фонды Плательщики налога Работодатели: предприятия организации и учреждения независимо от форм собственности и организационно правовых форм деятельности в том числе с иностранными инвестициями; компании фирмы любые другие организации в том числе товарищества образованные в соответствии с законодательством иностранных государств далее именуемые иностранными юридическими лицами которые осуществляют предпринимательскую или иную деятельность на территории РФ континентальном шельфе и в экономической...