12364

Вихревое электрическое поле

Лабораторная работа

Физика

3 Лабораторная работа № 13 Вихревое электрическое поле 1. Цель работы. Изучение вихревого электрического поля при изменении магнитного поля в соленоиде. 2. Электромагнитная индукция. Вихревое электрическое поле. Явление электромагнитной индукции...

Русский

2013-04-26

3.2 MB

49 чел.

3

Лабораторная работа № 13

«Вихревое электрическое поле»

1. Цель работы. Изучение вихревого электрического поля при изменении магнитного поля в соленоиде.

2. Электромагнитная индукция. Вихревое электрическое поле.

Явление электромагнитной индукции состоит в том, что в проводящем контуре, находящемся в переменном магнитном поле, возникает электродвижущая сила индукции εi. Если контур замкнут, то в нем возникает электрический ток, называемый индукционным током.

ЭДС электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока Фm сквозь поверхность, ограниченную этим контуром:

 εi= –. (13.1)

Знак «–» в формуле (13.1) является выражением правила Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемый им магнитный поток сквозь поверхность, ограниченную контуром, препятствует тем изменениям магнитного потока, которые вызвали появление индукционного тока.

Индукционные токи, возникающие в массивных проводниках, называются токами Фуко. Замкнутые цепи таких токов образуются в толще самого проводника. Количество тепла, выделяемого в единицу времени вихревыми токами Фуко, прямо пропорционально квадрату частоты изменения магнитного поля.

Обобщением закона электромагнитной индукции является введение понятия вихревого электрического поля:

= –. (13.2)

В контуре, охватывающем изменяющийся магнитный поток, возникает электрическое поле с ненулевой циркуляцией. При определенной симметрии системы может возникнуть электрическое поле с замкнутыми силовыми линиями. Выражение (13.2) может быть записано в дифференциальной форме:

 rot = – . (13.3)

3. Описание экспериментальной установки.

Магнитное поле в работе создается с помощью двух соосных соединенных последовательно соленоидов на подставках. Соленоиды расположены на небольшом расстоянии друг от друга, так что поле между ними совпадает с полем длинного соленоида.

Рис.13.1. Схема экспериментальной установки.

В работах в качестве источника питания токовой системы – источника магнитного поля – используется генератор сигналов функциональный ГСФ-2. Основные технические характеристики генератора таковы:

Диапазон частот    0,1 Гц-100 кГц;

Выходные сигналы    гармонический, пилообразный,

прямоугольный;

Выходное напряжение   0-10 В;

Выходной ток     0-1 А.

В работе используется синусоидальный ток в катушках. Вихревое электрическое поле определяется с помощью многоконтурного плоского датчика, размещенного в зазоре между соленоидами. Напряженность поля в каждом контуре равна возникающей в нем ЭДС электромагнитной индукции, деленной на полную длину обмотки контура:

Евихр= εi/(2πrN). (13.4)

Здесь r – радиус контура, N=501 – число витков контура.

Схема измерений представлена на рис.13.1. Измерение ЭДС индукции в контурах L2 производится вольтметром универсальным типа В7-58А.

Если ток в соленоидах L1 изменяется по гармоническому закону:

 I=U1m sin(2πνt)/R0, (13.5)

то индукция однородного магнитного поля внутри соленоидов равна:

В=μ0=μ0sin(2πνt). (13.6)

Здесь N0=4302 – число витков соленоида, l=120,00,5 мм, rs=26,00,5 мм – соответственно длина соленоида и его радиус.

Если радиус измерительного контура L2 меньше радиуса соленоида r<rs, то выражение для величины напряженности вихревого электрического поля имеет вид:

Евихр= –= –сos(2πνt). (13.7)

Если радиус измерительного контура L2 больше радиуса соленоида r>rs, то выражение для величины напряженности вихревого электрического поля имеет вид:

Евихр= –= –cos(2πνt). (13.8)

Напряженность вихревого электрического поля может быть вычислена по измерениям ЭДС U2 в контурах:

Евихр= –сos(2πνt). (13.9)

4. Порядок выполнения работы.

4.1. Вставить многоконтурный датчик в зазор между двумя соленоидами.

4.2. Собрать схему измерений, приведенную на рис.13.1. Измерения проводятся при частоте синусоидального сигнала 10-50 кГц.

4.3. Измерить амплитуду U1m.

4.4. Рассчитать амплитуды значений напряженности вихревого электрического поля Евихр(r) по формулам:

Евихр1=, при r < rs;

Евихр1=, при r > rs.

4.5. Измерить амплитуды ЭДС индукции в контурах U2m.

4.6. Рассчитать амплитуды значений напряженности вихревого электрического поля Евихр(r) по формуле:

Евихр2 = .

4.7. Результаты измерений и расчетов внести в табл.13.1.

Таблица 13.1.

r, мм

10

15

20

25

30

40

50

60

70

U1эф

Евихр1, мВ/м

U2эф,мВ

Евихр2, мВ/м

4.8. Нарисовать зависимости Евихр1(r) и Евихр2(r) на одном графике.

5. Контрольные вопросы.

5.1. Опыты Фарадея. Закон электромагнитной индукции. Правило Ленца.

5.2. Движение проводника в магнитном поле.

5.3. Вращение рамки в магнитном поле.

5.4. Вихревое электрическое поле. Токи Фуко.

5.5. Методика расчета напряженности вихревого электрического поля длинного соленоида.

Рекомендуемая литература.

  1.  Детлаф А.А., Яворский Б.М. Курс физики: Учеб. пособие для втузов.– 2-е изд., испр. и доп.– М.: Высш. шк., 1999.– 718 с.: ил.
  2.  Савельев И.В. Курс общей физики: Учеб. пособие. В 3-х т. Т.2. Электричество и магнетизм. Волны. Оптика. – 3-е изд., испр. –М.: Наука. Гл. ред. физ.-мат. лит., 1988. 496 с., ил.
  3.  Трофимова Т.И. Курс физики: Учеб. пособие для вузов.– 5-е изд., стер.– М.: Высш. шк., 1998.– 542 с.: ил.

3

PAGE  1

  1.  

 

А также другие работы, которые могут Вас заинтересовать

24180. Внешняя и внутренняя политика в годы правления Владимира Мономаха 28.06 KB
  Немудрено ведь годы правления Владимира Мономаха фактически начались еще при князе Всеволоде его отце и он активно участвовал во всех государственных делах при Святополке. Внутренняя политика в годы правления Владимира Мономаха. Князь сразу же принял решение расширить и обновить Русскую правду которую стали называть в результате его решительных действий Устав Владимира Мономаха.
24181. Причины феодальной раздробленности Древнерусского государства 42.71 KB
  Причины феодальной раздробленности Древнерусского государства Для возникновения феодальной раздробленности были экономические социальные и этнические причины. Появление изгоев и закупов свидетельствует о наличии расслоения в старой свободной общине и создании категорий крестьян вынужденных вступать в поземельную зависимость не от государства а от частных господ. На этом более высоком уровне феодализации политическая раздробленность Древнерусского государства была закономерной и вела к укреплению его функций в интересах отдельных земель...
24182. Положительные и отрицательные последствия феодальной раздробленности 17.63 KB
  Положительные: 1 трудности жизни на юге заставляли людей уходить на север и восток страны заселяя и осваивая эти прежде неразвитые окраины древней Руси. Значение периода феодальной раздробленности в русской истории У политической раздробленности как у любого исторического явления есть и положительные и отрицательные стороны: 1. Положительные: исчезла пропасть между центрами и окраинами; последние превратились в самостоятельные княжества которые по уровню хозяйственного социальнополитического и культурного развития превосходили Киевскую...
24183. Сущность социальных отношений 47 KB
  Социальные нормы – это средства социальной регуляции поведения индивидов и групп. Социальная роль – это социальная функция модель поведения объективно заданная социальной позицией личности в системе социальных и межличностных отношений. С социальной стратификацией связано понятие социальной мобильности. Под социальной мобильностью понимается любой переход индивида или социального объекта ценности то есть всего того что создано или модифицировано человеческой деятельностью из одной социальной позиции в другую.
24184. Классификация социальных процессов 50 KB
  В тех случаях когда цели и способы их достижения у индивида или группы не могут удовлетворить индивида компромисса достичь не удается и индивид не приспосабливается к новым условиям окружающей среды. Ассимиляция ссимиляция это процесс взаимного культурного проникновения через который личности и группы приходят к разделяемой всеми участниками процесса общей культуре. Это всегда двухсторонний процесс в котором каждая группа имеет возможности для проникновения своей культуры в другие группы пропорционально своему размеру престижу и другим...
24185. Применение имитационного моделирования 47.5 KB
  Имитационное моделирование это частный случай математического моделирования. Применение имитационного моделирования К имитационному моделированию прибегают когда: дорого или невозможно экспериментировать на реальном объекте; невозможно построить аналитическую модель: в системе есть время причинные связи последствие нелинейности стохастические случайные переменные; необходимо сымитировать поведение системы во времени. Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов...
24186. АЛЛЕРГИЯ 276 KB
  В поддержании аллергического иммунного ответа важны долговременные клетки памяти в т. Схема 1 Классификация аллергических реакций: Влмфзависимые Активные Немедленная по ДжеллКумбсу гуморальные и анафилаксия 1й тип реагины Тлмфзависимые Пассивные Отсроченная 5 ч 2й цитолиз клеточные АТ и клетки Замедленная дни 3й имм. Неклеточные структуры тканей коллагена миелина базальной мембраны почек – вовлекаются соседние клетки вторично. Медиаторы: гаммаинтерферон...
24187. ПАТОЛОГИЯ ВОДНО-СОЛЕВОГО ОБМЕНА 289.5 KB
  Эфферентная часть: основной механизм – регуляция почек – диуреза: а Вегетативная нервная симпатическая адреналин – чревный нерв – снижение диуреза; б Гипоталамогипофизарная регуляция: супраоптические и паравентрикулярные ядра – АДГ задний гипофиз – почечные канальцы гиалуронидаза – активация реабсорбции – тоже снижение диуреза; в передний гипофиз – АКТГ – надпочечники – альдостерон – почечные канальцы сукцинатдегидрогеназа – усиление реабсорбции Na и пассивно – воды г диэнцефальный мозг адреногломерулотропин –...
24188. КИСЛОТНО-ОСНОВНОЕ СОСТОЯНИЕ 70 KB
  Начальные сдвиги и компенсаторные реакции при нарушениях КОС Нарушения КОС Сдвиг КОС Компенсация Дыхательные Ацидоз рН  рСО2 НСО3 Алкалоз рН рСО2 НСО3 Негазовые Ацидоз рН НСО3 рСО2 Алкалоз рН НСО3 рСО2 Схема 1 Работа гемоглобиновой буферной системы Легкие О2 Нв НвО2 СО2  Кровь: венозный_Нв артериальный_НвО2щелочные_продукты  Нв  ...