12369

Измерение магнитного поля на оси катушек Гельмгольца

Лабораторная работа

Физика

Лабораторная работа № 8 Измерение магнитного поля на оси катушек Гельмгольца 1. Цель работы: измерение магнитного поля на оси катушек Гельмгольца индукционным методом. 2. Магнитные поля токовых систем. Магнитное поле постоянных токов изучалось Био и Саваром окон...

Русский

2013-04-26

247.5 KB

28 чел.

 Лабораторная работа № 8

«Измерение магнитного поля на оси катушек Гельмгольца»

1. Цель работы: измерение магнитного поля на оси катушек Гельмгольца индукционным методом.

2. Магнитные поля токовых систем.

Магнитное поле постоянных токов изучалось Био и Саваром, окончательная формулировка найденного ими закона принадлежит Лапласу. Поэтому закон, с помощью которого рассчитывается магнитное поле постоянных токов, носит название закона Био-Савара-Лапласа.

Основная трудность, связанная с формулировкой такого закона, состоит в том, что магнитное поле зависит не только от величины тока, но и от формы проводника.В электростатике поле распределенных зарядов  также зависит от их расположения в пространстве. Однако там это поле можно представить как сумму полей точечных зарядов d, причем  поле точечного заряда может быть непосредственно выделено и изучено. В случае постоянных токов также можно полагать, что результирующее поле  есть сумма полей d, созданных отдельными элементами тока. Но измерить и изучить поле одного изолированного элемента постоянного тока невозможно.

Единственный путь преодоления этой трудности состоит в предположении, что в любой точке пространства магнитное поле , создаваемое всем током в целом, складывается из полей d, создаваемых элементами этого тока в данной точке. Для магнитных полей, как и для электрических, имеет место принцип суперпозиции (наложения), и полная индукция магнитного поля дается векторной суммой (или интегралом) элементарных магнитных индукций:

=. (8.1)

По закону Био-Савара-Лапласа магнитное поле dB, создаваемое элементом тока  на расстоянии r от него, обратно пропорционально квадрату расстояния и прямо пропорционально величине элемента тока и синусу угла между векторами  и :

. (8.2)

Здесь =Гн/м – магнитная постоянная,  – магнитная проницаемость среды.

Таким образом, для решения основной задачи магнитостатики – нахождения магнитного поля, создаваемого произвольной системой проводников с токами, требуется следующая последовательность действий:

- рассчитать исходную систему проводников с токами (источниками поля) на элементы тока I;

- вычислить вклад в индукцию магнитного поля  в точке наблюдения от каждого из элементов тока по формуле (8.2);

- вычислить результирующую индукцию  по формуле (8.1).

Индукции магнитного поля, создаваемого некоторыми простейшими системами проводников с токами приведены ниже (рис.8.1).

Рис.8.1. Магнитные поля простейших токовых систем.

2.1. Магнитное поле прямолинейного проводника с током (рис.8.1а).

 B=. (8.3)

Для бесконечно длинного проводника с током:

 B=. (8.4)

2.2. Магнитное поле кругового витка с током в произвольной точке оси витка (рис.8.1б).

 B=I. (8.5)

Для центра кругового витка:

 B=I. (8.6)

2.3. Магнитное поле соленоида (рис.8.1в)

 B=. (8.7)

Для бесконечно длинного соленоида:

 B=, (8.8)

где n – число витков на единицу длины соленоида.

3. Описание экспериментальной установки.

Индукционный метод измерения характеристик магнитного поля основан на явлении электромагнитной индукции. Метод предназначен для измерения, как переменных, так и постоянных магнитных полей. При измерении характеристик переменного магнитного поля в это поле помещают проводящий замкнутый контур, как правило, катушку, состоящую из N0 витков. Поскольку поле переменное, то магнитный поток, пронизывающий контур будет меняться, и в контуре возникнет ЭДС электромагнитной индукции

, (8.9)

где S0 – площадь витка, Bn – проекция вектора магнитной индукции на нормаль к площадке S0. В случае если магнитное поле создается токами, изменяющимися по закону синуса, то индукция магнитного поля, пропорциональная силе тока,

 B=Bmsin(t+). (8.10)

Если изначально известно направление магнитного поля, то контур с током можно сориентировать таким образом, чтобы вектор магнитной индукции был перпендикулярен площадке S0. Тогда при подстановке (8.10) в (8.9):

 (8.11)

Амплитудное значение ЭДС индукции

 (8.12)

Из (8.12) видно, что, зная параметры контура, частоту колебаний тока, создающего магнитное поле и амплитуду ЭДС индукции, можно определить амплитудное значение индукции магнитного поля.

В случае измерения характеристик постоянного магнитного поля замкнутый проводящий контур вращают в магнитном поле с некоторой угловой скоростью . По закону электромагнитной индукции в контуре возникает ЭДС индукции, определяемая формулами (8.11-8.12).

В работе в качестве источника питания катушек Гельмгольца – источников магнитного поля – используется генератор сигналов функциональный ГСФ-2. Основные технические характеристики генератора таковы:

Диапазон частот    0,1 Гц-100 кГц;

Выходные сигналы    гармонический, пилообразный,

прямоугольный;

Выходное напряжение   0-10 В;

Выходной ток     0-1 А.

В работе для измерения магнитной индукции используется индукционный эталонный (с известными параметрами) датчик магнитного поля (рис.8.2) – это катушка 1 из N0=2502 витков диаметром 18,01,0 мм (площадь витка S0=2,50,3 см2), закрепленная на кронштейне 2, установленном в стойке 3 на рейтере 4, которая может перемещаться по рельсу 5. Под рельсом закреплена линейка 6, по которой отсчитывается координата метки, нанесенной на рейтере. Катушка может поворачиваться вокруг оси, перпендикулярной оси кронштейна. Угол поворота отсчитывается по шкале 7. При слегка ослабленном винте 8 кронштейн может также поворачиваться. Таким образом, катушка может принимать произвольную ориентацию.

Схема регистрации магнитного поля индукционным методом приведена на рис.8.3. Здесь L1 – контур, создающий магнитное поле, R0 – датчик тока, L2 – индукционный датчик магнитного поля. Сигналы с датчиков поступают на два входа осциллографа.

Измерения проводятся на частоте 100-500 Гц при пилообразном или синусоидальном токе в контуре L1 с размахом 0,1-0,6 А. Для получения заданной формы тока генератор ГСФ-2 работает в режиме генератора тока.

Рис.8.2. Индукционный эталонный датчик.

Рис.8.3. Индукционный метод регистрации магнитного поля.

Рис.8.4. Напряжение на датчике тока и на индукционном датчике.

Кривые на экране осциллографа при пилообразном токе показаны на рис.8.4. Их форма соответствует закону электромагнитной индукции: ЭДС индукции пропорциональна производной магнитного потока по времени.

Перед выполнением измерений катушку L2 ориентируют в магнитном поле таким образом, чтобы плоскость ее витков была перпендикулярна направлению магнитного поля. В этом случае магнитный поток, пронизывающий катушку пропорционален индукции магнитного поля, создаваемого контуром L1,

Ф=N0S0B. (8.13)

Ток I1 в контуре L1 изменяется пропорционально напряжению U1: I1=U1/R. Следовательно индукция B магнитного поля в месте положения катушки изменяется с течением времени пропорционально напряжению U1 (рис.8.4). Магнитный поток, пронизывающий катушку, меняется с течением времени. По закону электромагнитной индукции в катушке возникает ЭДС индукции:

 (8.14)

За четверть периода t=T/4 колебаний напряжение в контуре L1 изменяется от –U1max до +U1max, что соответствует размаху колебаний U1 (рис.8.4.). Так как BU1, то за это же время магнитное поле изменится на B=2Bm, где Bm – амплитуда колебаний магнитного поля. За такое же время ЭДС индукции U2 изменяется на U2. Используя соотношение (8.14), получим

. (8.15)

Тогда, амплитуда Bm магнитной индукции поля, создаваемого контуром L1 в месте положения эталонного датчика L2, измеряемая экспериментально индукционным методом:

 Bэ=ΔU2T/(8N0S0), (8.16)

где Т – период колебаний. Если измерения проводятся на синусоидальном сигнале, то амплитуда магнитной индукции определяется формулой:

 Bэ=U2/(2N0S0) = ΔU2/(4N0S0), (8.17)

где – частота колебаний.

4. Порядок выполнения работы

4.1. Ознакомиться с осциллографическим методом измерений.

4.2. Собрать схему, представленную на рис.8.3. В качестве источника поля L1 используются катушки Гельмгольца – две соосные катушки, разнесенные на расстояние, равное их радиусу. Такая система создает почти однородное магнитное поле в области, сравнимой по размерам с радиусом катушек. Установите на длинном рельсе две катушки с расстоянием 50-60 мм между метками их рейтеров. Катушки соединяются последовательно. Выходы U1 и U2 схемы измерений соединить с входами Y1 и Y2 электронного осциллографа. Генератор ГСФ-2 работает в режиме генератора пилообразных импульсов тока при частоте 100-500 Гц. Подбирая сопротивление эталонного резистора R0 из магазина сопротивлений, получить в контуре с током пилообразные колебания с ΔU1=0,2-0,6 В (измерения проводятся на экране осциллографа).

4.3. Измерения магнитного поля производятся с использованием эталонного индукционного датчика. Установите датчик на оси катушек Гельмгольца. Сориентируйте индукционный датчик, таким образом, чтобы плоскость его витков совпадала с плоскостью витков катушек Гельмгольца.

4.4. Проведите измерения размаха ЭДС ΔU2 в точках на оси с шагом 10 мм.

4.5. Результаты измерений и последующих вычислений внесите в табл.8.1.

Таблица 8.1.

Координата датчика, мм

ΔU2, мВ

Bm, мТл

Значения магнитной индукции рассчитываются по формуле (8.16).

4.4. Построить график зависимости магнитной индукции от координаты.

5. Контрольные вопросы.

5.1. Закон Био-Савара-Лапласа.

5.2. Расчет магнитных полей простейших токовых систем (прямолинейный ток, ось кругового витка, соленоид).

5.3. Закон электромагнитной индукции.

5.4. Индукционный метод измерения магнитных полей.

5.5. Как изменится график напряжения U2 (рис. 6.4), если генератор будет вырабатовать постоянный или синусоидальный сигнал.

5.6. Индукционный метод измерения магнитных полей.


Рекомендуемая литература.

  1.  Детлаф А.А., Яворский Б.М. Курс физики: Учеб. пособие для втузов.– 2-е изд., испр. и доп.– М.: Высш. шк., 1999.– 718 с.: ил.
  2.  Савельев И.В. Курс общей физики: Учеб. пособие. В 3-х т. Т.2. Электричество и магнетизм. Волны. Оптика. – 3-е изд., испр. –М.: Наука. Гл. ред. физ.-мат. лит., 1988. 496 с., ил.
  3.  Трофимова Т.И. Курс физики: Учеб. пособие для вузов.– 5-е изд., стер.– М.: Высш. шк., 1998.– 542 с.: ил.

6

  1.  

 

А также другие работы, которые могут Вас заинтересовать

76908. Тройничный нерв. V пара черепных нервов, ее ветви, топография и области иннервации 185.93 KB
  V пара тройничные нервы правый и левый смешанные: чувствительные двигательные вегетативные. Нервы развиваются вместе с производными первой висцеральной дуги челюстями и жевательными мышцами кожей лица слизистой полости носа и рта. Ствол тройничного нерва возникает при объединении чувствительного и двигательного корешков на выходе из мозга.
76909. Лицевой нерв, его топография, ветви и области иннервации 181.44 KB
  VII пара включает два нерва лицевой и промежуточный смешанные нервы двигательные парасимпатические и чувствительные. Промежуточный нерв нередко обозначают как XIII пару и тогда в VII паре остается только лицевой двигательный нерв. Нерв выходит из мозга в поперечной борозде между мостом и продолговатым мозгом латерально от оливы направляясь по задней черепной яме к внутреннему слуховому проходу куда вступает вместе с VIII парой.
76910. Преддверно-улитковый нерв. VIII пара черепных нервов и топография ее ядер. Проводящие пути органов слуха и равновесия 183.89 KB
  Преддверная и улитковая части VIII пары объединяются во внутреннем слуховом проходе и направляются через заднюю черепную яму к мозговому стволу к его поперечной борозде между мостом и продолговатым мозгом где латеральнее лицевого и промежуточного нервов входят во внутрь моста и заканчиваются синапсами на ядрах вестибулярного поля моста. Вестибулярное поле находится в латеральных углах ромбовидной ямки на него проецируются два улитковых и четыре вестибулярных ядра залегающих в вентролатеральных отделах моста. Улитковые ядра: переднее и...
76911. Языкоглоточный нерв. IX пара черепных нервов, их ядра, топография и области иннервации 180.17 KB
  IX пара языкоглоточные нервы смешанные развиваются из заднего мозгового пузыря. Корешки нерва 45 выходят позади оливы продолговатого мозга и сливаются в короткий ствол. Чувствительные узлы нерва: верхний в яремном отверстии нижний в области каменистой ямки височной кости содержат псевдоуниполярные нейроны центральные отростки которых формируют чувствительный корешок нерва.
76912. Блуждающий нерв, его ядра, их топография; ветви и области иннервации 181.14 KB
  Краниальная часть нерва отдает ветви: менингиальную веточку для твердой мозговой оболочки в задней черепной яме; ушную ветвь которая через сосцевидный каналец и барабаннососцевидную щель подходит к коже наружного слухового прохода и ушной раковине. Ветви шейной части: глоточные к глоточному сплетению и через него к слизистой мышцамконстрикторам глотки мышцам мягкого неба кроме напряжителя из тройничного нерва шейные верхние сердечные ветви к сердечным сплетениям гортанные верхние нервы к перстнещитовидной мышце наружная...
76913. Прибавочный и подъязычный нервы 181.56 KB
  Обе пары XI XII по выходе из черепа идут между внутренней яремной веной и внутренней сонной артерией и ложатся под заднее брюшко двубрюшной мышцы. Из черепа ствол нерва выходит через яремное отверстие вместе с IX X парами и внутренней яремной веной занимая при этом латеральное положение. Внутренняя веточка для соединения с блуждающим нервом; наружная ветвь для трапециевидной и грудиноключичнососцевидной мышц; Наружная ветвь проходит между внутренней яремной веной и внутренней сонной артерией а затем уходит под заднее брюшко...
76914. Вегетативная, автономная нервная система. Вегетативная часть нервной системы, ее деление и характеристика отделов 185.72 KB
  В надсегментарных вегетативных центрах которые располагаются в коре полушарий базальных ядрах мозжечке различают: центры чувствительные по восприятию внутренней рецепции; центры двигательные по координации гладкомышечных и сердечных сокращений в органах и сосудах. Подкорковые вегетативные центры Полосатое тело центры терморегуляции слюно и слезоотделения образования слизи. Ретикулярная формация ствола мозга зрачковый рефлекс центры дыхания сердечный сосудистый глотания и рвоты и другие регуляции обмена веществ и...
76915. Парасимпатическая часть ВНС 187.66 KB
  Краниальная часть парасимпатических ядер включает мезэнцефалические добавочное и срединное ядра глазодвигательного нерва которые лежат в сером веществе дна водопровода на уровне верхних холмиков. Центральные нейроны ядер направляют свои преганглионарные отростки в составе глазодвигательного нерва к ресничному узлу где они переключаются на периферические 2ые нейроны. Дорсальное ядро блуждающего нерва направляет преганглионарные волокна в интрамуральные органные парасимпатические узлы органов иннервируемых Х парой где они прерываются....
76916. Шейный симпатикус. Шейный отдел симпатического ствола: топография, узлы, ветви, области, иннервируемые ими 183.18 KB
  Серые соединительные ветви выходят из шейных узлов в шейные спинномозговые нервы а с ними в нервы шейного и плечевого сплетений. Шейный верхний узел имеет веретенообразную форму в длину достигает 2 см в толщину 05 см лежит на длинной мышце головы впереди поперечных отростков IIго и IIIго шейных позвонков но позади внутренней сонной артерии и блуждающего нерва. Из него начинаются следующие симпатические нервы.