12470

Розв‘язання систем нелінійних рівнянь. Метод Ньютона

Лабораторная работа

Математика и математический анализ

Лабораторна робота №4 Чисельні методи Лабораторна робота №4 Розв‘язання систем нелінійних рівнянь. Метод Ньютона. Мета роботи: познайомитися з методами розв‘язання

Украинкский

2013-04-27

87.49 KB

6 чел.

Лабораторна робота №4                                                                              Чисельні методи

Лабораторна робота №4

Розв‘язання систем нелінійних рівнянь. Метод Ньютона.

Мета роботи: познайомитися з методами розв‘язання систем нелінійних алгебраїчних рівнянь, реалізувати заданий за варіантом метод у середовищі МatLAB.

Завдання до виконання роботи: Доповнити систему МatLAB файлом, що реалізує метод Ньютона для розв‘язання систем нелінійних алгебраїчних рівнянь (відповідно до варіанту).

Теоретичні відомості.

Для розв‘язання нелінійних та трансцендентних рівнянь можуть застосовуватися звичайний ітераційний метод. Але при знаходженні розв‘язків збіжність ітераційного методу до конкретного розв‘язку залежить від початкових значень змінних.

Метод Ньютона оснований на знаходженні послідовності {[x1k,x2k,…,xnk]}, що збігається до розв‘язку (x1, x2, …, xn). Цей метод називають ітерацією нерухомої точки. Величина похідної в нерухомій точці визначає, чи буде ітераційний процес збіжним. Коли це правило застосовується для функції декількох змінних – похідні повинні бути частинними. Узагальненням “похідної” для системи функцій є матриця Якобі (Якобіан). Наприклад, для функцій трьох незалежних змінних f1(x,y,z), f2(x,y,z), f3(x,y,z) матриця Якобі має вигляд:

                  (1)

Для функцій декількох змінних диференціал використовується, щоб показати, як змінення незалежних змінних вплине на залежні змінні. Наприклад, задані функції:

       (2)

Допустимо, що значення цих функцій відомі в точці (х0, у0, z0) і необхідно визначити їх значення в точці (x, y, z) віддаленій на ().

             (3)

де – диференціали залежних змінних, – диференціали незалежних змінних. Якщо змінення функції позначити dF, а змінення змінних dX, використовуючи векторне позначення можемо записати:

     (4)

Збіжність поблизу нерухомої точки. Ітерацію нерухомої точки визначаємо наступним чином:

                              (5)

Теорема. Припустимо, що функції (2) та їх перші частинні похідні неперервні в області, в якій знаходиться нерухома точка (x, y, z). Якщо (х0, у0z0) достатньо близько розташована до точки (x, y, z) і виконуються умови:

                (6)

то ітерація збігається до нерухомої точки (x, y, z).

Метод Ньютона виконується за наступними етапами:

1етап – для здійснення обчислень сформуємо функцію:

     (7)

2 етап – обчислимо Якобіан:

         (8)

3 етап – розв‘яжемо систему рівнянь:

4 етап – обчислимо координати наступної точки – наступне наближення до розв‘язку має вигляд:

   (9)

Наприклад – розв‘яжемо нелінійну систему рівнянь:

Початкові значення для методу Ньютона : (х0, у0) = (2,00; 0,25)

Сформуємо вектор-функцію і обчислимо матрицю Якобі:

.

В початковій точці вони приймуть значення:

.

Обчислимо х, у з лінійної системи рівнянь:

Значення невідомих знаходять будь-яким методом для розв‘язання систем лінійних рівнянь (для систем великої розмірності):

Здійснимо наступну ітерацію:

Аналогічно знайдемо два наступні розв‘язки:

Ітерації продовжуємо до досягнення заданої точності обчислень (в розглянутому прикладі точність обмежувалася п‘ятьма десятковими знаками після коми).

Завдання на лабораторну роботу.

Розв‘язати наступні рівняння методом Ньютона в середовищі МatLAB та порівняти їх з розв‘язками, отриманими за допомогою даної викладачем програми.

Варіанти завдань:

1 вар.                          2 вар.     

3 вар.                               4 вар.    

  5 вар.                    6 вар.

   7 вар.                              8 вар.  

   9 вар.                      10 вар.


 

А также другие работы, которые могут Вас заинтересовать

40152. ПОМЕХОУСТОЙЧИВОЕ КОДИРОВАНИЕ. КЛАССИФИКАЦИЯ КОДОВ 146 KB
  По длине кодов и взаимному расположению в них символов различают равномерные и неравномерные коды. Неравномерные коды отличаются тем что кодовые комбинации у них отличаются друг от друга не только взаимным расположением символов но и их количеством при минимизации средней длины кодовой последовательности. Очевидно что средняя длина неравномерного кода будет минимизироваться тогда когда с более вероятными сообщениями источника будут сопоставляться более короткие комбинации канальных символов. Тем самым создается возможность обнаружения и...
40153. МОДУЛЯЦИЯ СИГНАЛОВ 143.5 KB
  В современных цифровых системах связи радиолокации радионавигации и радиотелеуправления также применяются различные виды импульсной модуляции.2 Радиосигналы с амплитудной модуляцией При АМ амплитуда несущего колебания меняется в такт передаваемому сообщению st Тогда общее выражение для АМ – сигнала будет иметь вид: где – амплитуда в отсутствии модуляции; – угловая круговая частота; – начальная фаза; – безразмерный коэффициент пропорциональности; – модулирующий сигнал. Рассмотрим простейший вид амплитудной модуляции –...
40154. РАДИОПЕРЕДАЮЩИЕ И РАДИОПРИЕМНЫЕ УСТРОЙСТВА 44.5 KB
  Назначение классификация и основные параметры Радиопередающие устройства радиопередатчики предназначены для формирования колебаний несущей частоты; модуляции их по закону передаваемого сообщения и излучения полученного радиосигнала в пространство или передачи его по физическим линиям связи. Нестабильность частоты несущих колебаний. Абсолютной нестабильностью частоты называется отклонение частоты f излучаемого радиопередатчиком сигнала от номинального значения частоты fном. Относительной нестабильностью частоты называется отношение...
40155. Основы радиоэлектроники и связи 78 KB
  В ней рассматриваются способы математического представления сообщений сигналов и помех методы формирования и преобразования сигналов в электрических цепях вопросы анализа помехоустойчивости и оптимального приема сообщений основы теории информации и кодирования. Знания полученные в результате изучения дисциплины являются базой для глубокого усвоения материала по существующим и перспективным методам передачи информации сравнительному анализу этих методов и выявлению наиболее рациональных способов повышения эффективности радиоэлектронных...
40156. ОБЩИЕ СВЕДЕНИЯ О РАДИОТЕХНИЧЕСКИХ СИГНАЛАХ И ПОМЕХАХ 1.75 MB
  Импульсный сигнал – это сигнал конечной энергии существенно отличный от нуля в течение ограниченного интервала времени соизмеримого со временем завершения переходного процесса в системе для воздействия на которую этот сигнал предназначен. Конкретный вид случайного процесса который наблюдается во время опыта например на осциллографе называется реализацией этого случайного процесса. Примером такого процесса является процесс характеризующий состояние системы массового обслуживания когда система скачком в произвольные моменты времени t...
40157. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ И СТАТИСТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ СИГНАЛОВ И ПОМЕХ 2.32 MB
  Для стационарного случайного процесса двумерная плотность вероятности и соответственно корреляционная функция зависят не от t1 и t2 в отдельности а только от их разности = t2 t1. В соответствии с этим корреляционная функция стационарного процесса определяется выражением 3.1 где математическое ожидание стационарного процесса; х1 х2 возможные значения случайного процесса соответственно в моменты времени t1 t2 ; = t2 – t1 интервал времени между сечениями; двумерная...
40158. ВРЕМЕННОЙ И СПЕКТРАЛЬНЫЙ АНАЛИЗ ПРОХОЖДЕНИЯ СЛУЧАЙНОГО ПРОЦЕССА ЧЕРЕЗ ЛИНЕЙНЫЕ СИСТЕМЫ 1.39 MB
  3 справедливы в полной мере если xt есть реализация случайного процесса t. Но эти формулы служат для решения основной задачи анализа линейной цепи при случайных воздействиях заключающейся в нахождении вероятностных характеристик выходного случайного процесса t если известны вероятностные характеристики входного случайного воздействия и определена цепь посредством задания порядка и коэффициентов дифференциального уравнения или импульсной характеристики. Требуется найти математическое ожидание t и корреляционную функцию...
40159. ОПТИМАЛЬНЫЙ РАДИОПРИЕМ КАК СТАТИСТИЧЕСКАЯ ЗАДАЧА 548 KB
  Введение в теорию оптимального радиоприема ОПТИМАЛЬНЫЙ РАДИОПРИЕМ КАК СТАТИСТИЧЕСКАЯ ЗАДАЧА Помехоустойчивость и ее основные задачи Особенность радиоприёма состоит в том что наряду с сигналами через антенную систему в приёмное устройство поступают разнообразные помехи. Количественно помехоустойчивость оценивается с помощью различных показателей использующих вероятностное описание помех и сигнала. Например применяются такие показатели как отношение сигнал шум на входе и выходе приёмного устройства вероятность правильного обнаружения...
40160. ИМПУЛЬСНЫЕ УСИЛИТЕЛИ МОЩНОСТИ 340.5 KB
  Основными определяющими факторами являются длительность фронта и среза импульса коллекторного перехода стокового тока транзистора и тип нагрузки активной и активно – индуктивной. Первый способ применяется когда возможно произвольно варьировать параметрами нагрузки. Тогда параметры нагрузки выбираются таким образом чтобы к моменту коммутации автоматически выполнялось условие Uкл=0 или Iкл=0. Второй способ используется если параметры нагрузки строго заданы и состоит во введении в схему дополнительных цепей искусственно разносящих во...