12472

Чисельне інтегрування. Формули Ньютона-Котеса

Лабораторная работа

Математика и математический анализ

Лабораторна робота №6 Чисельне інтегрування. Формули НьютонаКотеса. Мета роботи: познайомитися з методами чисельного інтегрування реалізувати заданий за варіантом метод інтегрування у середовищі МatLAB. Завдання до виконання роботи: Доповнити систему МatLAB файл

Украинкский

2013-04-27

508.05 KB

24 чел.

Лабораторна робота №6

Чисельне інтегрування. Формули Ньютона-Котеса.

Мета роботи: познайомитися з методами чисельного інтегрування, реалізувати заданий за варіантом метод інтегрування у середовищі МatLAB.

Завдання до виконання роботи: Доповнити систему МatLAB файлом, що реалізує заданий метод інтегрування (відповідно до варіанту).

Теоретичні відомості.

В наукових та інженерних задачах часто потрібно обчислювати визначені інтеграли. Але не всі вони мають аналітичний розв’язок. Для знаходження таких інтегралів застосовуються методи чисельного інтегрування.

В основу чисельних методів інтегрування закладений фізичний зміст визначеного інтеграла. Визначений інтеграл дорівнює площі фігури, що обмежена неперервною підінтегральною функ-цією f(x) на проміжку [a, b] (рисунок).

Класично визначений інтеграл обчислюється за формулою Ньютона-Лейбница:

Але ця формула малопридатна для практичного застосування, оскільки клас функцій, для яких первісні F(a) та F(b) можна виразити через елементарні функції дуже вузький. Крім того, часто на практиці підінтегральна функція задається таблично і саме поняття первісної втрачає сенс. Тому в наш час для обчислення інтегралів велике розповсюдження отримали чисельні методи.

Задача чисельного інтегрування полягає у знаходженні визначеного інтегралу від функції f(x) на інтервалі [a, b], обчислюючи функцію f(x) на скінченій множині точок.

Виберемо проміжні точки так, щоб a = x0 < x1 < < xM = b. Формулою чисельного інтегрування або формулою квадратури називають:

яка відповідає визначеному інтегралу

  (1)

У формулі – похибка інтегрування. Вона має сенс лише тоді, коли функція f(x) задана аналітично. Функції називають ваговими коефіцієнтами. Вузлові точки для чисельного інтегрування можуть вибиратися рівновіддаленими, як у формулах Сімпсона чи Буля, або розташованими за певними правилами, як для формули Гаусса-Лежандра.

Квадратурні формули інтерполяційного типу.

Щоб отримати інтерполяційну формулу для складних функцій нерідко використовують інтерполяційні поліноми, що наближено описують ці функції. За визначенням існує єдиний поліном (зазначеного типу) PМ(х) ступеня М, який проходить через (М+1) рівновіддалених точок.

При використанні поліному Лагранжа з рівновіддаленими вузлами для наближення функції f(x) на інтервалі [a, b], інтеграл від f(x) наближено обчислюється за допомогою інтегралу від PL(х), в результаті отримуємо формулу квадратури Ньютона-Котеса (Newton-Cotes). Коли початкова і кінцева точки х0 = а та хМ = b , формулу називають замкнутою. Формули для наближення поліномами М = 1, 2, 3 та 4 відповідно наведені у таблиці 1.

Таблиця 1

Назва формули

Формула

Похибка формули

Ступінь точності n

Трапецій

n = 1

Симпсона

n = 3

Симпсона 3/8

n = 3

Буля

n = 5

Схеми визначення інтегралу за формулами квадратури.

Замкнута формула квадратури Ньютона-Котеса.

При обчисленні інтегралу можемо отримати проміжних точок більше, ніж використовується у формулі квадратури. Тому для обчислення інтегралу на всьому заданому проміжку скористаємося складною формулою квадратури. Так складна формула трапецій має вигляд:

         (2)

   (3)

Складна формула Сімпсона:

        (4)

 (5)

Для того, щоб формула квадратури була замкнутою, потрібно, щоб кількість вузлових точок на проміжку [a, b] була кратна числу точок, на яких будується вибрана формула квадратури з врахуванням початкової та кінцевої точок кожної локальної формули квадратури.

 Розрахунок визначеного інтегралу  за замкнутою формулою Симпсона.

З рисунку бачимо, що для розрахунку визначеного інтегралу на проміжку [х0, х8] інтервал розбили на 4 підінтервали, формула Сімпсона використовувалася 4 рази. Якщо позначити кількість точок, що використовується в простій формулі Сімпсона n = 3 і число застосувань формули m = 4 (значення функції в точках х2, х4, х6 використовуються двічі), то розрахунок кількості вузлів матиме вигляд: . Аналогічно розраховується кількість точок за іншими формулами квадратури.

Завдання на лабораторну роботу.

У середовищі MatLAB створити програму для розв‘язання задачі (при розв‘язанні задач використовувати замкнуті формули квадратури, перевірити отриманий результат за допомогою функції quad8(fun, a, b, tol)):

Задача 1 (варіанти 1-4). Швидкість автомобіля v через час t складає (3t2 + 5) м/с (для варіанту 1). Розрахувати шляхом інтегрування пройдений автомобілем шлях за 60 секунд руху (х0 = 0, хk = 60). (Площа між графіком швидкість/час і віссю х дорівнює пройденому шляху).

Розв‘язати задачу, використовуючи квадратурну формулу (число підінтервалів – не меньше 10):

Варіант

Формула

Функція швидкості v

1

Трапецій

(3 t 2 + 5)

2

Сімпсона

2/3 + 2)

3

Симпсона 3/8

(7 + 2х - 2/3)

4

Буля

(3 х 3/5 + 1)

Задача 2 (варіанти 5-8). На початку роботи напруга двигуна u через який проходить струм і (і0 = 0, іk = 5), змінюється за залежністю (для варіанту 5). Визначити шляхом інтегрування потужність, що необхідна для розгону двигуна. (Площа між графіком напруга/струм і віссю х дорівнює потужності).

Розв‘язати задачу, використовуючи квадратурну формулу (число підінтервалів – не меньше 7):

Варіант

Формула

Функція напруги u

5

Трапецій

6

Сімпсона

7

Симпсона 3/8

8

Буля

Задача 3 (варіанти 9-12). Синусоїдальна напруга задається рівнянням . Шляхом інтегрування знайти середнє значення напруги за пів періоду (0 = 0, k = ). (Середнє значення величини розраховується за формулою ).

Розв‘язати задачу, використовуючи квадратурну формулу (число підінтервалів – не меньше 9):

Варіант

Формула

Функція напруги v

9

Трапецій

10

Сімпсона

11

Симпсона 3/8

12

Буля


 

А также другие работы, которые могут Вас заинтересовать

59029. Листок - орган фотосинтезу 51 KB
  Мета: розширити і поглибити знання учнів про фотосинтез; зясувати особливості будови листка в звязку з його функціями; формувати вміння встановлювати взаємозвязок між будовою листка і його функціями; вміння працювати з мікроскопом; розкрити значення фотосинтезу в природі і житті людини...
59030. Лицар в іржавих обладунках. Роман Сервантеса Премудрий ідальго Дон Кіхот з Ламанчі 78 KB
  Можна спитати в учнів які лицарські романи знаходились в бібліотеці Дон Кіхота про це вони повинні були прочитати вдома у розділі VI першої частини. Назва роману Сервантеса та імя головного героя Коли взимку 1605 року у книжкових лавках Мадрида...
59031. Позакласна робота з математики. Логічні задачі 48 KB
  Завжди робіть таблицю, у ній ви зможете враховувати всі ймовірні варіанти. Уважно читайте кожне твердження. По-справжньому уважно. Звичайно кожне твердження містить щось таке, що дозволить вам спростувати хоча б один із варіантів.
59032. Матеріали до вивчення творів Ернеста Хемінгуея (1899-1961). Людина не для того створена, щоб терпіти поразки 40.5 KB
  Старий рибалка Сантьяго спіймав велику рибину але додому привіз тільки хребет бо рибу зїли акули. Чому хлопець пішов від Сантьяго Звелів тато. Який звичай був у Сантьяго Базікати в морі самим з собою. Яка єдина зброя є у Сантьяго Воля і розум.
59033. М. Метерлінк. Синій птах - лірична оповідь про пошуки щастя 38 KB
  Мета: проаналізувати філософські роздуми автора про велич навколишнього світу в якому живе людина про бажання пізнати таємниці речей і щастя постановку ним питань загальнолюдської моралі; донести учням гуманізм письменника...
59034. Мій рідний край у думах та піснях 60 KB
  Українська мова дуже багата на казки та пісні але найхарактернішими для творчості цього народу є дума епічна поема. І над чим він тяжко в пісні плаче Що він знає а не знаєм ми. Що ж можуть розповісти дослідникові Одещини українські народні пісні та думки Багато аби ми хотіли в ті пісні вслухатися або вчитатися.
59035. Містер початкових класів. Струнко дуть солдати 29.5 KB
  Привітання учасників 10 балів 2.Кожен отримує ту кількість балів скільки разів відіжметься 4. Найбільша кількість балів 5. Перший хто склав отримує 8 балів.
59036. Сценарій виховного заходу. Масляна 51 KB
  Весна Вбігають блазні. Допоможе нам у цьому Масляна. Ведуча: Масляна Масниця Колодій одне з календарно-побутових свят яке повязане із давнім народним звичаєм проводами зими і зустріччю весни. Пісня Масляна Муз.
59037. Матеріальна культура українців 53 KB
  На сьогоднішній урок дослідницькі групи готували повідомлення у вигляді тематичних виписок за темою Матеріальна культура українців. Робота дослідницьких груп Прошу представника першої групи Господарі доповісти.