12472

Чисельне інтегрування. Формули Ньютона-Котеса

Лабораторная работа

Математика и математический анализ

Лабораторна робота №6 Чисельне інтегрування. Формули НьютонаКотеса. Мета роботи: познайомитися з методами чисельного інтегрування реалізувати заданий за варіантом метод інтегрування у середовищі МatLAB. Завдання до виконання роботи: Доповнити систему МatLAB файл

Украинкский

2013-04-27

508.05 KB

24 чел.

Лабораторна робота №6

Чисельне інтегрування. Формули Ньютона-Котеса.

Мета роботи: познайомитися з методами чисельного інтегрування, реалізувати заданий за варіантом метод інтегрування у середовищі МatLAB.

Завдання до виконання роботи: Доповнити систему МatLAB файлом, що реалізує заданий метод інтегрування (відповідно до варіанту).

Теоретичні відомості.

В наукових та інженерних задачах часто потрібно обчислювати визначені інтеграли. Але не всі вони мають аналітичний розв’язок. Для знаходження таких інтегралів застосовуються методи чисельного інтегрування.

В основу чисельних методів інтегрування закладений фізичний зміст визначеного інтеграла. Визначений інтеграл дорівнює площі фігури, що обмежена неперервною підінтегральною функ-цією f(x) на проміжку [a, b] (рисунок).

Класично визначений інтеграл обчислюється за формулою Ньютона-Лейбница:

Але ця формула малопридатна для практичного застосування, оскільки клас функцій, для яких первісні F(a) та F(b) можна виразити через елементарні функції дуже вузький. Крім того, часто на практиці підінтегральна функція задається таблично і саме поняття первісної втрачає сенс. Тому в наш час для обчислення інтегралів велике розповсюдження отримали чисельні методи.

Задача чисельного інтегрування полягає у знаходженні визначеного інтегралу від функції f(x) на інтервалі [a, b], обчислюючи функцію f(x) на скінченій множині точок.

Виберемо проміжні точки так, щоб a = x0 < x1 < < xM = b. Формулою чисельного інтегрування або формулою квадратури називають:

яка відповідає визначеному інтегралу

  (1)

У формулі – похибка інтегрування. Вона має сенс лише тоді, коли функція f(x) задана аналітично. Функції називають ваговими коефіцієнтами. Вузлові точки для чисельного інтегрування можуть вибиратися рівновіддаленими, як у формулах Сімпсона чи Буля, або розташованими за певними правилами, як для формули Гаусса-Лежандра.

Квадратурні формули інтерполяційного типу.

Щоб отримати інтерполяційну формулу для складних функцій нерідко використовують інтерполяційні поліноми, що наближено описують ці функції. За визначенням існує єдиний поліном (зазначеного типу) PМ(х) ступеня М, який проходить через (М+1) рівновіддалених точок.

При використанні поліному Лагранжа з рівновіддаленими вузлами для наближення функції f(x) на інтервалі [a, b], інтеграл від f(x) наближено обчислюється за допомогою інтегралу від PL(х), в результаті отримуємо формулу квадратури Ньютона-Котеса (Newton-Cotes). Коли початкова і кінцева точки х0 = а та хМ = b , формулу називають замкнутою. Формули для наближення поліномами М = 1, 2, 3 та 4 відповідно наведені у таблиці 1.

Таблиця 1

Назва формули

Формула

Похибка формули

Ступінь точності n

Трапецій

n = 1

Симпсона

n = 3

Симпсона 3/8

n = 3

Буля

n = 5

Схеми визначення інтегралу за формулами квадратури.

Замкнута формула квадратури Ньютона-Котеса.

При обчисленні інтегралу можемо отримати проміжних точок більше, ніж використовується у формулі квадратури. Тому для обчислення інтегралу на всьому заданому проміжку скористаємося складною формулою квадратури. Так складна формула трапецій має вигляд:

         (2)

   (3)

Складна формула Сімпсона:

        (4)

 (5)

Для того, щоб формула квадратури була замкнутою, потрібно, щоб кількість вузлових точок на проміжку [a, b] була кратна числу точок, на яких будується вибрана формула квадратури з врахуванням початкової та кінцевої точок кожної локальної формули квадратури.

 Розрахунок визначеного інтегралу  за замкнутою формулою Симпсона.

З рисунку бачимо, що для розрахунку визначеного інтегралу на проміжку [х0, х8] інтервал розбили на 4 підінтервали, формула Сімпсона використовувалася 4 рази. Якщо позначити кількість точок, що використовується в простій формулі Сімпсона n = 3 і число застосувань формули m = 4 (значення функції в точках х2, х4, х6 використовуються двічі), то розрахунок кількості вузлів матиме вигляд: . Аналогічно розраховується кількість точок за іншими формулами квадратури.

Завдання на лабораторну роботу.

У середовищі MatLAB створити програму для розв‘язання задачі (при розв‘язанні задач використовувати замкнуті формули квадратури, перевірити отриманий результат за допомогою функції quad8(fun, a, b, tol)):

Задача 1 (варіанти 1-4). Швидкість автомобіля v через час t складає (3t2 + 5) м/с (для варіанту 1). Розрахувати шляхом інтегрування пройдений автомобілем шлях за 60 секунд руху (х0 = 0, хk = 60). (Площа між графіком швидкість/час і віссю х дорівнює пройденому шляху).

Розв‘язати задачу, використовуючи квадратурну формулу (число підінтервалів – не меньше 10):

Варіант

Формула

Функція швидкості v

1

Трапецій

(3 t 2 + 5)

2

Сімпсона

2/3 + 2)

3

Симпсона 3/8

(7 + 2х - 2/3)

4

Буля

(3 х 3/5 + 1)

Задача 2 (варіанти 5-8). На початку роботи напруга двигуна u через який проходить струм і (і0 = 0, іk = 5), змінюється за залежністю (для варіанту 5). Визначити шляхом інтегрування потужність, що необхідна для розгону двигуна. (Площа між графіком напруга/струм і віссю х дорівнює потужності).

Розв‘язати задачу, використовуючи квадратурну формулу (число підінтервалів – не меньше 7):

Варіант

Формула

Функція напруги u

5

Трапецій

6

Сімпсона

7

Симпсона 3/8

8

Буля

Задача 3 (варіанти 9-12). Синусоїдальна напруга задається рівнянням . Шляхом інтегрування знайти середнє значення напруги за пів періоду (0 = 0, k = ). (Середнє значення величини розраховується за формулою ).

Розв‘язати задачу, використовуючи квадратурну формулу (число підінтервалів – не меньше 9):

Варіант

Формула

Функція напруги v

9

Трапецій

10

Сімпсона

11

Симпсона 3/8

12

Буля


 

А также другие работы, которые могут Вас заинтересовать

48045. Архитектура жилых и общественных зданий 157 KB
  Дипломный проект охватывает комплекс взаимосвязанных вопросов архитектурного проектирования. Постоянно увеличивающийся объем и широкий размах строительства в нашей стране требует очень большого числа специалистов в самых различных областях архитектурного творчества. Однако, как бы ни были разнообразны и актуальны задачи
48047. Методичні вказівки. Програмування 189.5 KB
  В ході самостійної підготовки, що передує курсовій роботі, вивчається лекційний та допоміжний матеріал, проводиться аналіз завдання, виконується розробка алгоритму його вирішення та підготовлюється вихідний текст програми на паперовому та електронному носії
48048. Генетика. Учебно-методическое пособие 505 KB
  Формы взаимодействия аллельных генов. Контролируются одной парой аллельных генов. Форма взаимодействия аллельных генов – полное доминирование. Определите генотипы и фенотипы потомства при условии что форма взаимодействия аллельных генов полное доминирование.
48049. Генетика. Задачник 3.79 MB
  перед генетикой ставятся все более сложные и важные задачи. Знание основных классических положений общей генетики становится потребностью все большего круга специалистов разного профиля. За период прошедший со времени выхода в свет первого издания Задачника 1976 теоретическая и практическая генетика шагнула далеко вперед. Обогатились понятия о сущности гена и его функциях.
48050. БИОЛОГИЯ С ОСНОВАМИ МЕДИЦИНСКОЙ ГЕНЕТИКИ 278 KB
  Какой цвет глаз будет у детей б Гетерозиготный кареглазый мужчина женился на гетерозиготной кареглазой женщине. Какова вероятность рождения детей с этой аномалией в семье где оба супруга страдают парагемофилией 47. От этого брака родилось двое детей – кареглазая дочь и голубоглазый сын. А Определите вероятность рождения шестипалых детей в семье где оба родителя гетерозиготны.