12472

Чисельне інтегрування. Формули Ньютона-Котеса

Лабораторная работа

Математика и математический анализ

Лабораторна робота №6 Чисельне інтегрування. Формули НьютонаКотеса. Мета роботи: познайомитися з методами чисельного інтегрування реалізувати заданий за варіантом метод інтегрування у середовищі МatLAB. Завдання до виконання роботи: Доповнити систему МatLAB файл

Украинкский

2013-04-27

508.05 KB

24 чел.

Лабораторна робота №6

Чисельне інтегрування. Формули Ньютона-Котеса.

Мета роботи: познайомитися з методами чисельного інтегрування, реалізувати заданий за варіантом метод інтегрування у середовищі МatLAB.

Завдання до виконання роботи: Доповнити систему МatLAB файлом, що реалізує заданий метод інтегрування (відповідно до варіанту).

Теоретичні відомості.

В наукових та інженерних задачах часто потрібно обчислювати визначені інтеграли. Але не всі вони мають аналітичний розв’язок. Для знаходження таких інтегралів застосовуються методи чисельного інтегрування.

В основу чисельних методів інтегрування закладений фізичний зміст визначеного інтеграла. Визначений інтеграл дорівнює площі фігури, що обмежена неперервною підінтегральною функ-цією f(x) на проміжку [a, b] (рисунок).

Класично визначений інтеграл обчислюється за формулою Ньютона-Лейбница:

Але ця формула малопридатна для практичного застосування, оскільки клас функцій, для яких первісні F(a) та F(b) можна виразити через елементарні функції дуже вузький. Крім того, часто на практиці підінтегральна функція задається таблично і саме поняття первісної втрачає сенс. Тому в наш час для обчислення інтегралів велике розповсюдження отримали чисельні методи.

Задача чисельного інтегрування полягає у знаходженні визначеного інтегралу від функції f(x) на інтервалі [a, b], обчислюючи функцію f(x) на скінченій множині точок.

Виберемо проміжні точки так, щоб a = x0 < x1 < < xM = b. Формулою чисельного інтегрування або формулою квадратури називають:

яка відповідає визначеному інтегралу

  (1)

У формулі – похибка інтегрування. Вона має сенс лише тоді, коли функція f(x) задана аналітично. Функції називають ваговими коефіцієнтами. Вузлові точки для чисельного інтегрування можуть вибиратися рівновіддаленими, як у формулах Сімпсона чи Буля, або розташованими за певними правилами, як для формули Гаусса-Лежандра.

Квадратурні формули інтерполяційного типу.

Щоб отримати інтерполяційну формулу для складних функцій нерідко використовують інтерполяційні поліноми, що наближено описують ці функції. За визначенням існує єдиний поліном (зазначеного типу) PМ(х) ступеня М, який проходить через (М+1) рівновіддалених точок.

При використанні поліному Лагранжа з рівновіддаленими вузлами для наближення функції f(x) на інтервалі [a, b], інтеграл від f(x) наближено обчислюється за допомогою інтегралу від PL(х), в результаті отримуємо формулу квадратури Ньютона-Котеса (Newton-Cotes). Коли початкова і кінцева точки х0 = а та хМ = b , формулу називають замкнутою. Формули для наближення поліномами М = 1, 2, 3 та 4 відповідно наведені у таблиці 1.

Таблиця 1

Назва формули

Формула

Похибка формули

Ступінь точності n

Трапецій

n = 1

Симпсона

n = 3

Симпсона 3/8

n = 3

Буля

n = 5

Схеми визначення інтегралу за формулами квадратури.

Замкнута формула квадратури Ньютона-Котеса.

При обчисленні інтегралу можемо отримати проміжних точок більше, ніж використовується у формулі квадратури. Тому для обчислення інтегралу на всьому заданому проміжку скористаємося складною формулою квадратури. Так складна формула трапецій має вигляд:

         (2)

   (3)

Складна формула Сімпсона:

        (4)

 (5)

Для того, щоб формула квадратури була замкнутою, потрібно, щоб кількість вузлових точок на проміжку [a, b] була кратна числу точок, на яких будується вибрана формула квадратури з врахуванням початкової та кінцевої точок кожної локальної формули квадратури.

 Розрахунок визначеного інтегралу  за замкнутою формулою Симпсона.

З рисунку бачимо, що для розрахунку визначеного інтегралу на проміжку [х0, х8] інтервал розбили на 4 підінтервали, формула Сімпсона використовувалася 4 рази. Якщо позначити кількість точок, що використовується в простій формулі Сімпсона n = 3 і число застосувань формули m = 4 (значення функції в точках х2, х4, х6 використовуються двічі), то розрахунок кількості вузлів матиме вигляд: . Аналогічно розраховується кількість точок за іншими формулами квадратури.

Завдання на лабораторну роботу.

У середовищі MatLAB створити програму для розв‘язання задачі (при розв‘язанні задач використовувати замкнуті формули квадратури, перевірити отриманий результат за допомогою функції quad8(fun, a, b, tol)):

Задача 1 (варіанти 1-4). Швидкість автомобіля v через час t складає (3t2 + 5) м/с (для варіанту 1). Розрахувати шляхом інтегрування пройдений автомобілем шлях за 60 секунд руху (х0 = 0, хk = 60). (Площа між графіком швидкість/час і віссю х дорівнює пройденому шляху).

Розв‘язати задачу, використовуючи квадратурну формулу (число підінтервалів – не меньше 10):

Варіант

Формула

Функція швидкості v

1

Трапецій

(3 t 2 + 5)

2

Сімпсона

2/3 + 2)

3

Симпсона 3/8

(7 + 2х - 2/3)

4

Буля

(3 х 3/5 + 1)

Задача 2 (варіанти 5-8). На початку роботи напруга двигуна u через який проходить струм і (і0 = 0, іk = 5), змінюється за залежністю (для варіанту 5). Визначити шляхом інтегрування потужність, що необхідна для розгону двигуна. (Площа між графіком напруга/струм і віссю х дорівнює потужності).

Розв‘язати задачу, використовуючи квадратурну формулу (число підінтервалів – не меньше 7):

Варіант

Формула

Функція напруги u

5

Трапецій

6

Сімпсона

7

Симпсона 3/8

8

Буля

Задача 3 (варіанти 9-12). Синусоїдальна напруга задається рівнянням . Шляхом інтегрування знайти середнє значення напруги за пів періоду (0 = 0, k = ). (Середнє значення величини розраховується за формулою ).

Розв‘язати задачу, використовуючи квадратурну формулу (число підінтервалів – не меньше 9):

Варіант

Формула

Функція напруги v

9

Трапецій

10

Сімпсона

11

Симпсона 3/8

12

Буля


 

А также другие работы, которые могут Вас заинтересовать

3540. Рынок земли 435.5 KB
  Термин «земля» охватывает все блага, данные природой в определенном объеме, регулировать который человек не властен, будь то сама земля, водные ресурсы или полезные ископаемые. Для фермера участок земли служит средством для возделывания сельскохозяйственных культур, для горожанина – территориальной площадкой для размещения жилых и производственных зданий
3542. Открытие и развитие нового производства на примере ООО Ариран 706 KB
  Хотя планирование успешно применяется в корпорациях и компаниях развитых стран мира уже столетия и считается необходимой предпосылкой эффективного и стабильного бизнеса, в России при переходе к рыночным отношениям оно оказалось практи...
3543. Тенденции развития печатной техники 342.84 KB
  Тенденции современного рынка печатной продукции оказали большое влияние и на развитие полиграфической техники. Всем понятно, что типографии будут приобретать то оборудование, которое позволит им успешнее работать на рынке в сложившейся ситу...
3544. СМИ как инструмент PR в условиях региона (на примере города Брянска) 1.48 MB
  Актуальность исследования. Одной из основных форм PR-деятельности является подготовка текстовых материалов для целевой общественности и для СМИ. PR-материалы любой организации создаются с целью продвижения информации для достижения понимани...
3545. Реконструкция газоочистных устройств ТЭЦ г. Анжеро-Судженск 2.9 MB
  Энергия – это движущая сила любого производства. Тот факт, что в распоряжении человека оказалось большое количество относительно дешевой энергии, в значительной степени способствовало индустриализации и развитию общества. Топливно-энер...
3546. Холодная штамповка 142.5 KB
  Холодная штамповка - одна из самых прогрессивных технологий получения заготовок, ;а в ряде случаев и готовых деталей изделий машиностроения, приборостроения, радиоэлектронных и вычислительных средств. По данным приборостроительных и ма...
3547. Машины для дробления, сортировки и мойки каменных материалов 131 KB
  Строительные машины в настоящее время неотъемлемая часть в любой сфере косвенно или прямо связанной со строительством. Позволяют улучшить и проконтролировать качество строительства. Ускорить сроки строительства. Облегчить труд человека в ка...
3548. Основные пути увеличения прибыли на предприятии ООО Гриант 114.5 KB
  Основную цель деятельности любого производителя (фирмы, делового предприятия) составляет максимизация прибыли. Возможности её получения ограничены, во-первых, издержками производства и, во-вторых, спросом на произведенную продукцию. Произво...