12472

Чисельне інтегрування. Формули Ньютона-Котеса

Лабораторная работа

Математика и математический анализ

Лабораторна робота №6 Чисельне інтегрування. Формули НьютонаКотеса. Мета роботи: познайомитися з методами чисельного інтегрування реалізувати заданий за варіантом метод інтегрування у середовищі МatLAB. Завдання до виконання роботи: Доповнити систему МatLAB файл

Украинкский

2013-04-27

508.05 KB

24 чел.

Лабораторна робота №6

Чисельне інтегрування. Формули Ньютона-Котеса.

Мета роботи: познайомитися з методами чисельного інтегрування, реалізувати заданий за варіантом метод інтегрування у середовищі МatLAB.

Завдання до виконання роботи: Доповнити систему МatLAB файлом, що реалізує заданий метод інтегрування (відповідно до варіанту).

Теоретичні відомості.

В наукових та інженерних задачах часто потрібно обчислювати визначені інтеграли. Але не всі вони мають аналітичний розв’язок. Для знаходження таких інтегралів застосовуються методи чисельного інтегрування.

В основу чисельних методів інтегрування закладений фізичний зміст визначеного інтеграла. Визначений інтеграл дорівнює площі фігури, що обмежена неперервною підінтегральною функ-цією f(x) на проміжку [a, b] (рисунок).

Класично визначений інтеграл обчислюється за формулою Ньютона-Лейбница:

Але ця формула малопридатна для практичного застосування, оскільки клас функцій, для яких первісні F(a) та F(b) можна виразити через елементарні функції дуже вузький. Крім того, часто на практиці підінтегральна функція задається таблично і саме поняття первісної втрачає сенс. Тому в наш час для обчислення інтегралів велике розповсюдження отримали чисельні методи.

Задача чисельного інтегрування полягає у знаходженні визначеного інтегралу від функції f(x) на інтервалі [a, b], обчислюючи функцію f(x) на скінченій множині точок.

Виберемо проміжні точки так, щоб a = x0 < x1 < < xM = b. Формулою чисельного інтегрування або формулою квадратури називають:

яка відповідає визначеному інтегралу

  (1)

У формулі – похибка інтегрування. Вона має сенс лише тоді, коли функція f(x) задана аналітично. Функції називають ваговими коефіцієнтами. Вузлові точки для чисельного інтегрування можуть вибиратися рівновіддаленими, як у формулах Сімпсона чи Буля, або розташованими за певними правилами, як для формули Гаусса-Лежандра.

Квадратурні формули інтерполяційного типу.

Щоб отримати інтерполяційну формулу для складних функцій нерідко використовують інтерполяційні поліноми, що наближено описують ці функції. За визначенням існує єдиний поліном (зазначеного типу) PМ(х) ступеня М, який проходить через (М+1) рівновіддалених точок.

При використанні поліному Лагранжа з рівновіддаленими вузлами для наближення функції f(x) на інтервалі [a, b], інтеграл від f(x) наближено обчислюється за допомогою інтегралу від PL(х), в результаті отримуємо формулу квадратури Ньютона-Котеса (Newton-Cotes). Коли початкова і кінцева точки х0 = а та хМ = b , формулу називають замкнутою. Формули для наближення поліномами М = 1, 2, 3 та 4 відповідно наведені у таблиці 1.

Таблиця 1

Назва формули

Формула

Похибка формули

Ступінь точності n

Трапецій

n = 1

Симпсона

n = 3

Симпсона 3/8

n = 3

Буля

n = 5

Схеми визначення інтегралу за формулами квадратури.

Замкнута формула квадратури Ньютона-Котеса.

При обчисленні інтегралу можемо отримати проміжних точок більше, ніж використовується у формулі квадратури. Тому для обчислення інтегралу на всьому заданому проміжку скористаємося складною формулою квадратури. Так складна формула трапецій має вигляд:

         (2)

   (3)

Складна формула Сімпсона:

        (4)

 (5)

Для того, щоб формула квадратури була замкнутою, потрібно, щоб кількість вузлових точок на проміжку [a, b] була кратна числу точок, на яких будується вибрана формула квадратури з врахуванням початкової та кінцевої точок кожної локальної формули квадратури.

 Розрахунок визначеного інтегралу  за замкнутою формулою Симпсона.

З рисунку бачимо, що для розрахунку визначеного інтегралу на проміжку [х0, х8] інтервал розбили на 4 підінтервали, формула Сімпсона використовувалася 4 рази. Якщо позначити кількість точок, що використовується в простій формулі Сімпсона n = 3 і число застосувань формули m = 4 (значення функції в точках х2, х4, х6 використовуються двічі), то розрахунок кількості вузлів матиме вигляд: . Аналогічно розраховується кількість точок за іншими формулами квадратури.

Завдання на лабораторну роботу.

У середовищі MatLAB створити програму для розв‘язання задачі (при розв‘язанні задач використовувати замкнуті формули квадратури, перевірити отриманий результат за допомогою функції quad8(fun, a, b, tol)):

Задача 1 (варіанти 1-4). Швидкість автомобіля v через час t складає (3t2 + 5) м/с (для варіанту 1). Розрахувати шляхом інтегрування пройдений автомобілем шлях за 60 секунд руху (х0 = 0, хk = 60). (Площа між графіком швидкість/час і віссю х дорівнює пройденому шляху).

Розв‘язати задачу, використовуючи квадратурну формулу (число підінтервалів – не меньше 10):

Варіант

Формула

Функція швидкості v

1

Трапецій

(3 t 2 + 5)

2

Сімпсона

2/3 + 2)

3

Симпсона 3/8

(7 + 2х - 2/3)

4

Буля

(3 х 3/5 + 1)

Задача 2 (варіанти 5-8). На початку роботи напруга двигуна u через який проходить струм і (і0 = 0, іk = 5), змінюється за залежністю (для варіанту 5). Визначити шляхом інтегрування потужність, що необхідна для розгону двигуна. (Площа між графіком напруга/струм і віссю х дорівнює потужності).

Розв‘язати задачу, використовуючи квадратурну формулу (число підінтервалів – не меньше 7):

Варіант

Формула

Функція напруги u

5

Трапецій

6

Сімпсона

7

Симпсона 3/8

8

Буля

Задача 3 (варіанти 9-12). Синусоїдальна напруга задається рівнянням . Шляхом інтегрування знайти середнє значення напруги за пів періоду (0 = 0, k = ). (Середнє значення величини розраховується за формулою ).

Розв‘язати задачу, використовуючи квадратурну формулу (число підінтервалів – не меньше 9):

Варіант

Формула

Функція напруги v

9

Трапецій

10

Сімпсона

11

Симпсона 3/8

12

Буля


 

А также другие работы, которые могут Вас заинтересовать

248. Блоки питания персональных компьютеров 473.5 KB
  Форма и основная физическая компоновка того или иного компонента ПК. Устройства для тестирования блоков питания компьютера. 20-контактный разъём блока питания стандарта ATX. Стандартный блок питания форм-фактора SFX/SFX12V, оснащённый внутренним вентилятором 60 мм.
249. Разработка приложения для создания информационно-поискового комплекса библиотеки техникума всех учебников всех специальностей 1.6 MB
  Основными инструментами для подготовки и показа презентаций в мировой практике являются программы PowerPoint компании Microsoft, CorelPresentations фирмы Corel и пакет StarOfllaj компании SterDivision GMBH.
250. Реалізація логістичних функцій складів в процесі товарного перевезення 597.5 KB
  Підйомно-транспортне обладнання: конвеєри, підйомні столи та платформи, крани, шківи, вантажозахватні пристрої. Управління багатономенклатурними постачаннями (ABC-XYZ). Розрахунок оптимальної партії постачання (EOQ).
251. Практика графического программирования 309 KB
  Написать программу, составляющую из фрагментов целую фотографию. Рисование дорожного знака с элементами анимации. Создание часов с круглым циферблатом и движущимися стрелками. Вывод в графическом окне заданный ребус и проверка его расшифровки.
252. Організація самостійної роботи студентів при виконанні контрольних робіт та індивідуальних завдань по курсу Організація баз даних 515 KB
  У методичному посібнику надані структура завдання до контрольної та індивідуальної робіт та приклад виконання завдання для придбання теоретичних та практичних навичок побудови баз даних в системі керування базами даних Visual FoxPro 6.
253. Теоретические аспекты охраны труда в Республике Беларусь 491.5 KB
  Назначение повторного заземления нулевого провода. Особенности предоставления компенсаций по результатам аттестации рабочих мест. Организация работы по охране труда в Республике Беларусь и на железнодорожном транспорте. Определение суммарного уровня шума от нескольких источников.
254. Роль лизинга в экономике России. Анализ развития лизингового рынка 608.5 KB
  Рассмотрение экономической сущности лизинга, а так же его возможной роли в укреплении экономики РФ. Изучение истории рынка лизинга в РФ, нормативно-правовой базы, роли лизинга в экономике, а также современного состояния лизингового рынка.
255. Cравнительная оценка гибридов томата в зимних теплицах ЗАО Агрокомбинат московский 614 KB
  Местоположение ЗАО агрокомбинат московский и уровень развития овощеводства в нем. Возделывание томата по малообъемной технологии. Экономическая оценка производства различных гибридов томата. Фенологические наблюдения и биометрические измерения рассады.
256. Фінансово-господарська діяльність військової частини 496.5 KB
  Вимоги щодо зберігання грошових виправдних документів. Справи, що заводяться фінансово-економічною службою військової частини. Обладнання приміщення фінансово-економічної служби та організація робочих місць працівників.