12558

ИЗМЕРЕНИЕ РАСХОДА И СКОРОСТИ ГАЗОВ

Лабораторная работа

Физика

ОТЧЕТ по лабораторной работе №5М ИЗМЕРЕНИЕ РАСХОДА И СКОРОСТИ ГАЗОВ ВВЕДЕНИЕ Возможности теоретического решения задач аэродинамики ограничены поэтому эксперимент часто является единственным источником сведений о взаимодействия потока газа с различными тел

Русский

2013-05-01

373 KB

34 чел.

ОТЧЕТ

по лабораторной работе №5М

ИЗМЕРЕНИЕ РАСХОДА И СКОРОСТИ ГАЗОВ

ВВЕДЕНИЕ

Возможности теоретического решения задач аэродинамики ограничены, поэтому эксперимент часто является единственным источником сведений о взаимодействия потока газа с различными телами. Однако непосредственное исследование объектов связано с большими трудностями. Поэтому измерения проводят в аэродинамических трубах при соблюдении условий подобия.

Целью настоящей работы является приобретение навыков измерений в дозвуковой аэродинамической трубе расходов и скоростей газа.

. ТЕОРИЯ

Наиболее часто употребляемыми устройствами для измерения расхода газов являются дроссельные устройства. Принцип, их действия основан на уменьшении давления в месте сужения трубопровода. Величина падения давления зависит от скорости газа, а поэтому может служить мерой расхода.

На основании проведенных исследований Всесоюзным институтом мер и измерительных приборов разработаны, а Комитетом стандартов тер и измерительных приборов при Совете Министров СССР утверждены "Правила 28-64 измерения расхода жидкостей, газов и паров стандартными диафрагмами и соплами". В этих Правилах установлена конструкция дроссельных приборов, способы отбора давленая. "Правила 28-64" позволяют изготовить и применять дроссельные устройства без предварительной градуировки при соблюдении следующих условий:

1. Дросселирование производится в трубопроводе круглого сечения.

2. Исследуемый газ заполняет весь объем трубопровода.

3. Поток газа является установившимся.

4. Фазовое состояние вещества не изменяется. Одним из типов дроссельных устройств является диафрагма. Чертеж стандартной диафрагмы приведен на рис. 1.1.

Диафрагмы годно применять без градуировки в трубопроводах диаметром не менее 50 mm при одновременном соблюдения условия 0,05 <  m < 0,7. Величина m есть модуль диафрагмы, равный отношению площадей отверстий диафрагмы и кана-

Рис. 1.1. Стандартная диафрагма

По мере удаления потока от диафрагмы сечение струи увеличивается до размеров канала, скорость падает до начального значения, а давление повышается. Однако полного восстановления давления не происходит, так как часть энергии потока диссипируется.

Выражение для расхода пара дросселирования можно вывести, на основании уравнения Бернулли и уравнения неразрывности:

. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Принципиальная схема экспериментальной установки

1 - диафрагма, 2 - канал трубы. 3 - окно, 4 - рабочий участок. 5 - трубка Пито, 6 - заслонка. 7 - гибкий переход, 8 - вентилятор

Рис. 2.1

Измерение расхода а скорости газа производится в дозвуковой аэродинамической трубе., В качестве рабочей среды используется .воздух. На рис.. 2.1 приведена схема аэродинамической трубы.

Циркуляция воздуха в замкнутом канале создается вентилятором. Внутренний диаметр канала трубы D = (0.300 ± 0.005) м, диаметр отверстия диафрагмы d0= (0,210 ± 0,005) м. На рабочем участке трубы установлено смотровое окно и предусмотрены вводы для установки исследуемых моделей и приборов. Для компенсации возможных напряжений рабочий участок соединен с вентилятором гибким переходом.

Перепад давления на диафрагме измеряется диффереренциальннм оптическим манометром ОМ-10. Измерение местной скорости потока производится трубкой Пито, которую можно перемещать по .вертикальному диаметру канала, перепад давления на трубке измеряется жидкостным наклонным микроманометром ММН, соединенным с выводами трубки Пито резиновыми шлангами. Для оценки средней скорости используется ручной чашечный анемометр. Рабочие условия определяются по барометру-анероиду и ртутному термометру.

Изменение скорости потока воздуха в канале трубы осуществляется поворотом заслонки регулятора потока на угол α = 0° + 90°. На регуляторе установлен лимб с деленяями через 5°, по которому определяется угол поворота заслонки.

. МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

3.1.1. Оценить зависимость средней скорости потока  от угла поворота заслонка регулятора потока. Измерение провести ручным анемометром.

3.1.2. Установить зависимость объемного расхода воздуха в канале от угла поворота заслонки.

3.1.3. Измерять профиль местных скоростей по сечению канала при максимальном потоке. Измерения провести с помощью трубки Пито. Путем численного интегрирования определить расход и сопоставить его с соответствующим  значением, найденным по диафрагме.

3.1.4. Вычислить погрешности определяемых величин и указать их на графиках.

. ОПЫТНЫЕ ДАННЫЕ И ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

4.1. ОПЫТНЫЕ ДАННЫЕ

Таблица 4.1

Рабочие условия

Наименование величины

Обозначение

Размерность

Значение

Атмосферное давление

 Па=Н/

99708,4

Температура воздуха в канале

           T

К

291,75

Коэффициент динамической вязкости воздуха при заданных условиях

           

Нс/м210-7

181,0

Плотность воздуха

          ρ

Кг/

1,205


Таблица 4.2

Результаты измерений средней скорости и расхода воздуха в канале

1

2

3

4

5

6

7

8

9

10

i



n, об.

t, с

, об/с

, м/с

Re 105

P, мм Hg

P, Па

Q, м3

Q, м3

1

0

700

67,44

10,38

10,31

2,05

3,9

520

0,74

0,05

2

15

650

64,72

10,04

10,03

2

3,2

427

0,67

0,05

3

20

600

64,61

9,29

9,4

1,87

2,8

373

0,63

0,05

4

25

550

66,93

8,22

8,51

1,69

2,2

293

0,56

0,05

Для табл. 4.2:

1-угол поворота заслонки регулятора потока;

2-разность показаний анемометра;

3-интервал времени;

4-скорость вращения оси анемометра;

5-средняя скорость потока в канале;

6-число Рейнольдса;

7-8-перепад давления на диафрагме;

9-объемный расход воздуха;

10-погрешность определения расхода;

Таблица 4.3

Измерение профиля местной скорости потока трубкой Пито и результаты численного интегрирования


1

2

3

4

5

6

i

ri, см

n, дел

P, мм

Н2О

P, Па

<V>, м/с

V, м/с

Si104, м2

Qi103, м3

0

0

68

13,6

133,3

12,4

0,1

0

0

1

1

69

13,8

135,2

12,5

0,1

3,14

3,90

2

2

70

14

137,2

12,6

0,1

9,42

11,82

3

3

69,5

13,9

136,2

12,5

0,1

15,71

19,70

4

4

69

13,8

135,2

12,48

0,1

21,99

27,45

5

5

68

13,6

133,3

12,4

0,1

28,27

35,15

6

6

67

13,4

131,3

12,3

0,1

34,56

42,65

7

7

66

13,2

129,4

12,2

0,1

40,84

50,00

8

8

65

13

127,4

12,1

0,1

47,12

57,22

9

9

63,5

12,7

124,5

12

0,1

53,41

64,32

10

10

62

12,4

121,5

11,8

0,1

59,69

70,99

11

11

61

12,2

119,6

11,7

0,1

65,97

77,47

12

12

60

12

117,6

11,6

0,1

72,26

84,13

13

13

59

11,8

115,6

11,5

0,1

78,54

90,66

14

13,5

58

11,6

113,7

11,4

0,1

41,63

47,63

15

14

57,5

11,5

112,7

11,4

0,1

43,20

49,21

16

14,5

57

11,4

111,7

11,3

0,1

44,77

50,78

17

15

56

11,2

109,8

11,2

0,1

46,34

52,10

Для табл. 4.3:

1-расстояние между осями трубки пито и канала;

2-перепад давления на трубке Пито;

3-значение местной скорости;

4-погрешность измерения скорости;

5-значение скорости, усредненное по двум измерениям для ri;

6-площадь кольцевого участка канала;

7-расход воздуха через данный кольцевой участок;

<V> на расстоянии 0,762R (≈ 11 см) = 11,7 м/c

График зависимости коэффициента Рейнольдса от угла поворота заслонки

Рис. 4.1

График зависимости объёмного расхода воздуха от угла поворота заслонки

Рис. 4.2

График зависимости средней скорости от угла поворота заслонки

Рис. 4.3

Эпюра скорости по сечению канала на интервале 0≤rR

Рис. 4.4

Вывод:

Провели опыт по измерению расхода и скорости газов. Значение скорости в табл. 4.2 (10.31 м/с) близко по значению к скорости в табл. 4.3 (11.7 м/с при 0.762R  11 см). Значения расходов отличаются также незначительно(0.74 м3/с и 0.78 м3/с). Это различие объясняется погрешностью микроманометра. Полученные результаты говорят о справедливости расчетных формул и теории, лежащей в основе эксперимента.


 

А также другие работы, которые могут Вас заинтересовать

360. Экономика предприятия. Понятия предприятия 625 KB
  Понятие предприятия, цели и направления деятельности. Классификация и структура персонала предприятия. Классификация, структура и оценка основных производственных фондов. Основные принципы организации и регулирования оплаты труда.
361. Выполнение работ по профессии Контролер (Сберегательного банка) 660.5 KB
  Порядок совершения операций по приему денежной наличности в кассу кредитной организации от юридических и физических лиц. Выполнение и оформление кассовых операций. Операции с поврежденными и сомнительными денежными знаками иностранных государств.
362. Особенности развития гибкости при занятиях гимнастикой у девочек 7-8 лет 303.5 KB
  Художественная гимнастика как вид спорта. Гибкость как физическое качество. Возрастные особенности развития девочек 7-8 лет. Тренировочный процесс на занятиях по художественной гимнастике в СДЮСШОР №1 Калининского района.
363. Модель промислового верстата з ЧПУ 1.84 MB
  Промисловий верстат з ЧПУ використовується для обробки різного роду матеріалів, нанесення зображень на різні види поверхонь, отримання різного роду фігурних елементів, фрезерних робіт.
364. Экономический расчет работы предприятия 473.5 KB
  Расчет численности младшего обслуживающего персонала. Определение средней тарифной ставки по видам воздействий. Расчет сдельного расценка за 1 автомобиле-день работы автомобиля. Затраты на расходные материалы и запасные части для ремонтной.
365. Основы программирования 110 KB
  Описание процесса компиляции и запуска программы. Программа для вычислений над матрицами. Microsoft Visual Studio Express. Стандартная библиотека шаблонов (STL). Создание динамического класса для работы с матрицами.
366. Создание транспортной сети SDH в городе Темиртау. 517.5 KB
  Разработка схемы включения станций в проектируемую сеть SDH города Темиртау. Выбор топологии включения станций проектируемой сети. Возможность интеграции с каналами PDH. Развитие магистральных телекоммуникаций казахстанских операторов связи.
367. Трансформация образа трикстера в современной культуре 843 KB
  Основные характеристики трикстера как мифологического персонажа в архаической традиции. Исходная парадигма образа героя-трикстера: этиологические мифы. Трикстериада и ее взаимоотношения с институтом шаманизма и волшебной сказкой.
368. Смарт-карты известных мировых производителей 139.5 KB
  Основные сведения о смарт-картах. Чтение/запись смарт-карты через параллельный порт. Основные управляющие команды карты. Назначение областей данных. Принципиальная схема источника питания.