12558

ИЗМЕРЕНИЕ РАСХОДА И СКОРОСТИ ГАЗОВ

Лабораторная работа

Физика

ОТЧЕТ по лабораторной работе №5М ИЗМЕРЕНИЕ РАСХОДА И СКОРОСТИ ГАЗОВ ВВЕДЕНИЕ Возможности теоретического решения задач аэродинамики ограничены поэтому эксперимент часто является единственным источником сведений о взаимодействия потока газа с различными тел

Русский

2013-05-01

373 KB

34 чел.

ОТЧЕТ

по лабораторной работе №5М

ИЗМЕРЕНИЕ РАСХОДА И СКОРОСТИ ГАЗОВ

ВВЕДЕНИЕ

Возможности теоретического решения задач аэродинамики ограничены, поэтому эксперимент часто является единственным источником сведений о взаимодействия потока газа с различными телами. Однако непосредственное исследование объектов связано с большими трудностями. Поэтому измерения проводят в аэродинамических трубах при соблюдении условий подобия.

Целью настоящей работы является приобретение навыков измерений в дозвуковой аэродинамической трубе расходов и скоростей газа.

. ТЕОРИЯ

Наиболее часто употребляемыми устройствами для измерения расхода газов являются дроссельные устройства. Принцип, их действия основан на уменьшении давления в месте сужения трубопровода. Величина падения давления зависит от скорости газа, а поэтому может служить мерой расхода.

На основании проведенных исследований Всесоюзным институтом мер и измерительных приборов разработаны, а Комитетом стандартов тер и измерительных приборов при Совете Министров СССР утверждены "Правила 28-64 измерения расхода жидкостей, газов и паров стандартными диафрагмами и соплами". В этих Правилах установлена конструкция дроссельных приборов, способы отбора давленая. "Правила 28-64" позволяют изготовить и применять дроссельные устройства без предварительной градуировки при соблюдении следующих условий:

1. Дросселирование производится в трубопроводе круглого сечения.

2. Исследуемый газ заполняет весь объем трубопровода.

3. Поток газа является установившимся.

4. Фазовое состояние вещества не изменяется. Одним из типов дроссельных устройств является диафрагма. Чертеж стандартной диафрагмы приведен на рис. 1.1.

Диафрагмы годно применять без градуировки в трубопроводах диаметром не менее 50 mm при одновременном соблюдения условия 0,05 <  m < 0,7. Величина m есть модуль диафрагмы, равный отношению площадей отверстий диафрагмы и кана-

Рис. 1.1. Стандартная диафрагма

По мере удаления потока от диафрагмы сечение струи увеличивается до размеров канала, скорость падает до начального значения, а давление повышается. Однако полного восстановления давления не происходит, так как часть энергии потока диссипируется.

Выражение для расхода пара дросселирования можно вывести, на основании уравнения Бернулли и уравнения неразрывности:

. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Принципиальная схема экспериментальной установки

1 - диафрагма, 2 - канал трубы. 3 - окно, 4 - рабочий участок. 5 - трубка Пито, 6 - заслонка. 7 - гибкий переход, 8 - вентилятор

Рис. 2.1

Измерение расхода а скорости газа производится в дозвуковой аэродинамической трубе., В качестве рабочей среды используется .воздух. На рис.. 2.1 приведена схема аэродинамической трубы.

Циркуляция воздуха в замкнутом канале создается вентилятором. Внутренний диаметр канала трубы D = (0.300 ± 0.005) м, диаметр отверстия диафрагмы d0= (0,210 ± 0,005) м. На рабочем участке трубы установлено смотровое окно и предусмотрены вводы для установки исследуемых моделей и приборов. Для компенсации возможных напряжений рабочий участок соединен с вентилятором гибким переходом.

Перепад давления на диафрагме измеряется диффереренциальннм оптическим манометром ОМ-10. Измерение местной скорости потока производится трубкой Пито, которую можно перемещать по .вертикальному диаметру канала, перепад давления на трубке измеряется жидкостным наклонным микроманометром ММН, соединенным с выводами трубки Пито резиновыми шлангами. Для оценки средней скорости используется ручной чашечный анемометр. Рабочие условия определяются по барометру-анероиду и ртутному термометру.

Изменение скорости потока воздуха в канале трубы осуществляется поворотом заслонки регулятора потока на угол α = 0° + 90°. На регуляторе установлен лимб с деленяями через 5°, по которому определяется угол поворота заслонки.

. МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

3.1.1. Оценить зависимость средней скорости потока  от угла поворота заслонка регулятора потока. Измерение провести ручным анемометром.

3.1.2. Установить зависимость объемного расхода воздуха в канале от угла поворота заслонки.

3.1.3. Измерять профиль местных скоростей по сечению канала при максимальном потоке. Измерения провести с помощью трубки Пито. Путем численного интегрирования определить расход и сопоставить его с соответствующим  значением, найденным по диафрагме.

3.1.4. Вычислить погрешности определяемых величин и указать их на графиках.

. ОПЫТНЫЕ ДАННЫЕ И ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

4.1. ОПЫТНЫЕ ДАННЫЕ

Таблица 4.1

Рабочие условия

Наименование величины

Обозначение

Размерность

Значение

Атмосферное давление

 Па=Н/

99708,4

Температура воздуха в канале

           T

К

291,75

Коэффициент динамической вязкости воздуха при заданных условиях

           

Нс/м210-7

181,0

Плотность воздуха

          ρ

Кг/

1,205


Таблица 4.2

Результаты измерений средней скорости и расхода воздуха в канале

1

2

3

4

5

6

7

8

9

10

i



n, об.

t, с

, об/с

, м/с

Re 105

P, мм Hg

P, Па

Q, м3

Q, м3

1

0

700

67,44

10,38

10,31

2,05

3,9

520

0,74

0,05

2

15

650

64,72

10,04

10,03

2

3,2

427

0,67

0,05

3

20

600

64,61

9,29

9,4

1,87

2,8

373

0,63

0,05

4

25

550

66,93

8,22

8,51

1,69

2,2

293

0,56

0,05

Для табл. 4.2:

1-угол поворота заслонки регулятора потока;

2-разность показаний анемометра;

3-интервал времени;

4-скорость вращения оси анемометра;

5-средняя скорость потока в канале;

6-число Рейнольдса;

7-8-перепад давления на диафрагме;

9-объемный расход воздуха;

10-погрешность определения расхода;

Таблица 4.3

Измерение профиля местной скорости потока трубкой Пито и результаты численного интегрирования


1

2

3

4

5

6

i

ri, см

n, дел

P, мм

Н2О

P, Па

<V>, м/с

V, м/с

Si104, м2

Qi103, м3

0

0

68

13,6

133,3

12,4

0,1

0

0

1

1

69

13,8

135,2

12,5

0,1

3,14

3,90

2

2

70

14

137,2

12,6

0,1

9,42

11,82

3

3

69,5

13,9

136,2

12,5

0,1

15,71

19,70

4

4

69

13,8

135,2

12,48

0,1

21,99

27,45

5

5

68

13,6

133,3

12,4

0,1

28,27

35,15

6

6

67

13,4

131,3

12,3

0,1

34,56

42,65

7

7

66

13,2

129,4

12,2

0,1

40,84

50,00

8

8

65

13

127,4

12,1

0,1

47,12

57,22

9

9

63,5

12,7

124,5

12

0,1

53,41

64,32

10

10

62

12,4

121,5

11,8

0,1

59,69

70,99

11

11

61

12,2

119,6

11,7

0,1

65,97

77,47

12

12

60

12

117,6

11,6

0,1

72,26

84,13

13

13

59

11,8

115,6

11,5

0,1

78,54

90,66

14

13,5

58

11,6

113,7

11,4

0,1

41,63

47,63

15

14

57,5

11,5

112,7

11,4

0,1

43,20

49,21

16

14,5

57

11,4

111,7

11,3

0,1

44,77

50,78

17

15

56

11,2

109,8

11,2

0,1

46,34

52,10

Для табл. 4.3:

1-расстояние между осями трубки пито и канала;

2-перепад давления на трубке Пито;

3-значение местной скорости;

4-погрешность измерения скорости;

5-значение скорости, усредненное по двум измерениям для ri;

6-площадь кольцевого участка канала;

7-расход воздуха через данный кольцевой участок;

<V> на расстоянии 0,762R (≈ 11 см) = 11,7 м/c

График зависимости коэффициента Рейнольдса от угла поворота заслонки

Рис. 4.1

График зависимости объёмного расхода воздуха от угла поворота заслонки

Рис. 4.2

График зависимости средней скорости от угла поворота заслонки

Рис. 4.3

Эпюра скорости по сечению канала на интервале 0≤rR

Рис. 4.4

Вывод:

Провели опыт по измерению расхода и скорости газов. Значение скорости в табл. 4.2 (10.31 м/с) близко по значению к скорости в табл. 4.3 (11.7 м/с при 0.762R  11 см). Значения расходов отличаются также незначительно(0.74 м3/с и 0.78 м3/с). Это различие объясняется погрешностью микроманометра. Полученные результаты говорят о справедливости расчетных формул и теории, лежащей в основе эксперимента.


 

А также другие работы, которые могут Вас заинтересовать

30765. Транспортирование сборных конструкций в монтажную зону. Приём сборных конструкций на объекте 14.84 KB
  транспортирование сборных конструкций в монтажную зону. Приём сборных конструкций на объекте. Доставка сборных конструкций на строительный объект может осуществляться: водным железнодорожным автомобильным транспортом. Доставка конструкций на объекты удаленные от транспортных магистралей может применяться с помощью вертолетов.
30766. Складирование и хранение сборных конструкций 14.9 KB
  Складирование и хранение сборных конструкций. В зависимости от принятой организации монтажных работ складирование сборных конструкций может осуществляться на промежуточной площадке или непосредственно у монтируемого объекта в зоне действия монтажного крана. На промежуточный склад обычно доставляют металлоконструкции когда площадку этого склада используют для укрупнительной сборки конструкций. Площадь складов строительных конструкций состоит из грузовой площадки занятой конструкциями и оперативной занятой проходами проездами местами...
30767. Подготовка строительных конструкций к монтажу. Монтажная оснастка 15.46 KB
  Подготовка строительных конструкций к монтажу. При подготовке к монтажу железобетонных конструкций внешним осмотром проверяют нет ли на них сколов бетона и трещин исправны ли монтажные петли. При подготовке к монтажу стальных конструкций также проверяют их состояние и геометрические размеры. Если отклонения элементов конструкций от проектных форм и геометрических размеров превышают нормы допустимые СНиП Несущие и ограждающие конструкции конструкции монтировать не разрешается.
30768. Основные монтажные процессы 14.75 KB
  1 подготовка элемента к монтажу 2 строповка – крепление к крюку крана 3 подъём перемещение установка в проектное положение 4временное закрепление 5выверка 6окончательное закрепление Подготовка конструкции к монтажу: проверка состояния нанесение осевых рисок на конструкцию и на место установки обустройство конструкции монтажной оснасткой закрепление расчалок распорок навесных лестниц оттяжек монтажное усиление конструкции укрупнительная сборка на земле сооружается блок из отдельных конструктивных элементов уменьшает...
30769. Укрупнительная сборка конструкции. Классификация монтажа по степени укрупнения 14.69 KB
  Укрупнительную сборку конструкций выполняют: на заводеизготовителе когда разделение элементов на блоки вызвано условиями изготовления в целях лучшего использования оборудования или повышения производительности труда; на строительной площадке если целесообразно собрать монтажный блок из нескольких элементов до подъема и полнее использовать грузоподъемность монтажного механизма. Сборке подлежат: стальные фермы больших пролетов поступающие на монтаж в виде двух полуферм; железобетонные и стальные колонны разделенные по высоте на несколько...
30770. Приспособления для выверки и временного закрепления конструкций 14.96 KB
  Приспособления для выверки и временного закрепления конструкций. При монтаже стальных и железобетонных конструкций используют приспособления позволяющие временно удерживать установленный на место элемент и регулировать его положение при выверке и приведении в проектное положение. Одиночные приспособления предназначены для удержания одного элемента групповые одного элемента или нескольких. Расчалки гибкие из канатов монтажные приспособления работающие только на растяжение.
30771. Основные способы строповки конструкций при монтаже. Грузозахватные приспособления 14.25 KB
  Основные способы строповки конструкций при монтаже. Строповка конструкций. Строповкой называют захват конструкций канатом стропом подвешенным к крюку монтажного крана для подъема и установки их в проектное положение. Конструкции стропуют в местах указанных в проекте и обеспечивают подачу конструкций к месту установки в положении соответствующем проекту.
30772. Приспособления для рабочего места и безопасного ведения работ на высоте 15.33 KB
  Приспособления для рабочего места и безопасного ведения работ на высоте. К работам на высоте относятся работы при выполнении которых работник находится на расстоянии менее 2 м от неогражденных перепадов по высоте 13 м и более. Рабочие места и проходы к ним зона А расположенные на перекрытиях покрытиях на высоте более 13 м и на расстоянии менее 2 м от границы перепада по высоте должны быть ограждены предохранительными или страховочными защитными ограждениями а при расстоянии более 2м сигнальными ограждениями соответствующими...
30773. Монтаж конструкций со склада и с транспортных средств 16.96 KB
  Монтаж конструкций со склада и с транспортных средств. Метод монтажа в зависимости от организации подачи элементов на монтаж: А со склада Б с колёс Основным условием доставки конструкций транспортными средствами является комплектная и ритмичная их подача в заданной технологической последовательности строго по часовому расписанному по минутам графику непосредственно к месту установки. Монтаж конструкций с транспортных средств по сравнению с предварительной разгрузкой является наиболее экономичным так как сокращаются затраты на...