12564

Адиабата. Измерение показателя адиабаты акустическим методом

Лабораторная работа

Физика

Колебательное движение с малыми амплитудами в сжимаемой жидкости называют акустическими волнами. Процесс распространения акустических волн в идеально сжимаемой жидкости списывается поведением во времени и пространстве основных акустических параметров

Русский

2016-10-06

611 KB

10 чел.

ОТЧЕТ

по лабораторной работе №5

ИЗМЕРЕНИЕ ПОКАЗАТЕЛЯ АДИАБАТЫ АКУСТИЧЕСКИМ МЕТОДОМ


ВВЕДЕНИЕ

Скорость звука может быть выражена через коэффициент адиабатической сжимаемости среды. Сжимаемость вычисляется через уравнение состояния. Следовательно, опыты по измерению скорости звука дают информацию об уравнении состояния среды. В лабораторной работе проводятся измерения скорости звука в газе при разных температурах, и затем определяется показатель адиабаты. Опытное значение показателя адиабаты сравнивается с теоретическим, полученным с привлечением уравнения состояния идеального газа. По соответствию теории и эксперимента можно судить о применимости уравнения состояния идеального газа.

. ТЕОРИЯ

Колебательное движение с малыми амплитудами в сжимаемой жидкости называют акустическими волнами. Процесс распространения акустических волн в идеально сжимаемой жидкости списывается поведением во времени и пространстве основных акустических параметров, каждый из которых можно считать состоящим из постоянной составляющей и конечной добавки, изменяющейся в акустической волне, т.е.

где p0 - статическое давление; ρ0 - плотность невозмущенной среды; ν0 - гидродинамическая скорость.

При распространении волн сжатия в среде происходят также колебания температуры, поэтому в качестве четвертого акустического параметра следовало бы ввести и температуру среды Т. Однако, считая процесс распространения звуковых волн адиабатическим, этот параметр можно не рассматривать.

Распространение звука из одной точки в другую подчинено законам механики и обусловлено свойствами среды, в которой проходит звук. Основными уравнениями движения жидкости являются уравнение непрерывности и уравнение Эйлера:

Эти уравнения можно линеаризовать, полагая , а также учитывая, что процесс распространения акустических волн в идеальной жидкости является безвихревым, что математически выражается условием

Вместо скорости ν можно ввести скалярный параметр φ  - потенциал скоростей . С учетом этого условия уравнения движения идеальной жидкости запишутся следующим образом:

Поскольку плотность ρ есть функция давления p, производную в уравнении непрерывности можно представить в виде

Тогда, дифференцируя (1.4), получим

Подставляя (1.6) с учетом (1.7) в (1.5), получаем

Из решения волнового уравнения (1.8) ясен смысл величины Wо - это скорость распространения бесконечно малых возмущений. Тогда, учитывая, что процесс распространения таких возмущений является адиабатическим, а также принимая во внимание (1.9), получаем

Из термодинамики известно уравнение

где γ - показатель адиабаты, равный отношению теплоемкостей  при постоянном давлении и постоянном объеме; V - мольный объем. Учитывая, что , из (1.11) определим

где М - масса моля газа;  R - универсальная газовая постоянная.  

Сравнивая (1.12) и (1.10), можно получить

Таким образом, для нахождения γ согласно (1.13) необходимо иметь набор экспериментальных значений W0(T).

. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Принципиальная схема экспериментальной установки

1 – генератор прямоугольных импульсов; 2 – волновод; 3 – динамик; 4 – микрофон; 5 – усилитель; 6 – источник питания; 7 – частотомер; 8 – вольтметр; 9 – сосуд с тающим льдом; 10 – выпрямитель; 11 – трансформатор; 12 – автотрансформатор; Х – холодный спай термопары; Г – горячий спай термопары

Рис. 1

В основу эксперимента в работе положен импульсный метод определения скорости звука.

В данной работе измерение времени продвижения фронта звуковой волны проводится на установке, блок-схема которой приведена на рис. 2.1. С генератора прямоугольных импульсов 1 импульс положительной полярности и амплитуды 60В через нагрузочное сопротивление (500 0м) подается на динамик. Одновременно этот же импульс является стартовым для включения измерителя интервалов времени частотомера 7 по входу "В". Электрический сигнал, поданный на динамик, преобразуется в волновой пакет, который распространяется в столбе воздуха, заключенного в волновод 2, и через время τ достигает микрофона, где преобразуется в электрический сигнал 2х10-5В. Однако пороговое значение сигналов запуска и останова измерителя интервалов времени частотомера разно 0,3 Б. Поэтому сигнал с микрофона усиливается сначала в трансформаторе с коэффициентом I02, а потом в усилителе 5 с коэффициентом усиления 103.

Усилитель питается от стандартного двухполярного источника постоянного тока 6. Усиленный до 2 В сигнал подается на, вход "Т" измерителя интервалов времени частотомера и останавливает его. Если пренебречь временем запаздывания в схеме усиления (что достигается увеличением верхней граничной частоты полосы пропускания до 10 Гц), а также учесть запаздывание по времени в микрофоне и динамике, то время, измеренное частотомером за вычетом этой поправки, и будет определять интересующее нас время т

Для снятия температурной зависимости скорости звука в работе используется следующая схема регулирования температуры. Разогрев волновода 2 осуществляется постоянным током (в целях уменьшения наводок в регистрируемой цепи), протекающим по нагревателю. Для регулирования подводимой к волноводу мощности схема питания нагревателя включена в автотрансформатор 12.

Таким образом, установка на выходных клеммах ЛАТРа определенного напряжения соответствует заданному значению постоянного тока через нагреватель.

Измерение температуры осуществляется при помощи медь-констатановой термопары, холодный спай которой (X) помещен в сосуд с тающим льдом 9, а горячий (Г) - припаян к волноводу с внутренней стороны. Измерение термо ЭДС   осуществляется универсальным цифровым вольтметром 8 типа В 7-21.

. МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

3.1. Задание 

Измерить зависимость скорости звука в воздухе как функцию его температуры и определить отношение теплоемкостей при постоянном давлении Сp   и постоянном объеме Сv .

Результатом проведения эксперимента является снятие зависимости времени задержки звуковых колебаний в воздухе внутри волновода τн от термо  ЭДС при изменении температуры воздуха в диапазоне 15-115° С.


. ОПЫТНЫЕ ДАННЫЕ И ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

4.1. ОПЫТНЫЕ ДАННЫЕ

Результаты измерений приведены в таблице.

Опытные данные


4.2. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Были получены следующие значения и их погрешности:

T=0.7 К

W=1 м/с

=201

tизм=4 мкС

В результате был рассчитан показатель адиабаты:

=1,440,09

табл=1,4

ЗАКЛЮЧЕНИЕ

В настоящей работе нами был изучен акустический метод измерения показателя адиабаты. Проведено измерение скорости звука в зависимости от температуры среды. Построен график зависимости . Как видно из графика, при увеличении температуры скорость звука также увеличивается. Экспериментальные результаты сошлись с табличными значениями в пределах погрешности.


 

А также другие работы, которые могут Вас заинтересовать

50246. Пояснить создание и настройку отчета в режиме конструктора СУБД Access 22.5 KB
  Настройка отчетов Чтобы изменить размер выделенного элемента управления можно воспользоваться маркерами изменения размера находящимися на сторонах в нижних углах и в правом верхнем углу. Для перемещения невыделенного элемента управления используйте указатель мыши. Если элемент управления имеет присоединенную надпись она перемещается вместе с ним. перемещать элемент управления и присоединенную надпись можно независимо друг от друга с помощью маркеров перемещения расположенных в левых верхних углах элемента управления и надписи.
50247. Визначення енергії дисоціації молекул йоду 896.5 KB
  Лабораторна установка для вивчення спектрів поглинання розчинів йоду зібрана на базі монохроматора УМ2 який використовується як спектроскоп. 3 виділені оптичні елементи що входять до складу монохроматора. 2 сфокусоване конденсорною лінзою 3 світло проходить через досліджуваний розчин 4 і потрапляє на вхідну щілину 6 монохроматора. Градуювання монохроматора Для цього потрібно див.
50248. СНЯТИЕ КРИВОЙ НАМАГНИЧИВАНИЯ И ПЕТЛИ ГИСТЕРЕЗИСА ФЕРРОМАГНИТНЫХ ВЕЩЕСТВ С ПОМОЩЬЮ ОСЦИЛЛОГРАФА 881.5 KB
  Классический расчет для круговой орбиты дает где eзаряд электрона;  его линейная скорость; rрадиус орбиты. Если для данного вещества экспериментально получить зависимость J=JH которая одинакова для образцов любой формы и размеров и рассчитать по формуле 2 H то на основании уравнения 1 можно найти индукцию магнитного поля в веществе. Экспериментально наиболее просто J=JH определяется для образца в виде тороида на который равномерно нанесены витки провода. 3...
50249. ОПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОЙ ЕМКОСТИ КОНДЕНСАТОРА 265 KB
  Цель работы: Определение электроемкостей отдельных конденсаторов и двух батарей из последовательно и параллельно соединенных конденсаторов. Емкость конденсатора определяется с помощью соотношения: C= где q абсолютная величина заряда на одной из обкладок конденсатора; U ...
50250. Определение электроемкости конденсатора при последовательном и параллельном соединении 164.5 KB
  Определение электроемкости конденсатора. Принципиальная схема установки или её главных узлов: Схема установки исследуемого конденсатора. Емкость конденсатора определяется с помощью соотношения:...
50251. Пристрій й основні елементи твердотельных лазерів 1.29 MB
  Устаткування й прилади Лазерна технологічна установка Квант16 ; лазер газовий ЛГ105; генераторна головка твердотільного лазера; лазерний стрижень лампа накачування відбивний блок набір дзеркал резонатора випромінювач газового лазера; штангенциркуль лінійка; матеріали вата спирт метиловий дрантя. Процес під дією якого атоми переводяться на верхні рівні називається накачуванням. Існує кілька методів накачування. У цьому випадку електромагнітна хвиля що поширюється в напрямку перпендикулярному до дзеркал буде по черзі відбиватися...
50252. Технологія одержання отвору в заготовці електроерозійної (електроіскровий) обробкою 237.5 KB
  Мета роботи: вивчити процес електроіскрової обробки технологію одержання отвору в заготовці різними способами цього виду обробки. Короткі теоретичні відомості Призначення електроерозійної обробки Цей вид обробки забезпечує великий економічний ефект при виготовленні деталей складного контуру криволінійних отворів і отворів складної форми розрізання дорогих матеріалів. Принцип електроерозійної обробки Електроерозійний спосіб обробки був відкритий в 1943 р. Один з видів електроерозійної обробки електроіскров що характеризується імпульсами...
50253. ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ МАХОВИКА. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ 167 KB
  ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ Вращением абсолютно твёрдого тела вокруг неподвижной оси называется такое его движение при котором все точки тела движутся в плоскостях перпендикулярных к неподвижной прямой называемой осью вращения тела и описывают окружности центры которых лежат на этой оси. Основной закон динамики вращательного движения тела закреплённого в одной неподвижной точке формулируется следующим образом: скорость изменения момента импульса тела вращающегося вокруг неподвижной точки равна...
50254. Определение длины световой волны по методу Юнга. Методическое указание 297 KB
  Совмещая перекрестие сначала с одной интерференционной полосой а затем с другой с помощью двойной риски перемещающейся по внутренней линейной шкале определяют целое число мм а по внешней круговой шкале десятые и сотые доли мм. Отсчёты на внешней шкале барабана снимаются напротив неподвижной тонкой риски нанесённой на неподвижную часть барабана. Для этого необходимо плавно вращая барабан З установить сначала перекрестие приблизительно в центре выбранной полосы в верхней части наблюдаемого поля обычно резкое изображение...