12565

ЯВЛЕНИЕ МАГНИТОСТРИКЦИИ

Лабораторная работа

Физика

ОТЧЕТ по лабораторной работе №4 ЯВЛЕНИЕ МАГНИТОСТРИКЦИИ ВВЕДЕНИЕ Явление магнитострикции заключается в изменении формы и размеров ферромагнетика при изменении его намагниченности в магнитном поле. Магнитострикция позволяет выяснить природу сил которые опред...

Русский

2013-05-02

733.5 KB

15 чел.

ОТЧЕТ

по лабораторной работе №4

ЯВЛЕНИЕ МАГНИТОСТРИКЦИИ

ВВЕДЕНИЕ

Явление магнитострикции заключается в изменении формы и размеров ферромагнетика при изменении его намагниченности в магнитном поле. Магнитострикция позволяет выяснить природу сил, которые определяют ферромагнитные свойства вещества. С помощью термодинамики удается связать объемный магнитострикционный эффект напряженностью магнитного поля. В работе исследуется характер зависимости продольной и поперечной магнитострикции от напряженности внешнего магнитного поля.       

. ТЕОРИЯ

Элементарными носителями магнетизма в ферромагнетиках являются, в основном, спиновые магнитные моменты электронов. Между ними существует два основных типа взаимодействия: обменное и магнитное

Обменные силы носят квантово-механический характер и не имеют классических аналогов. Расчеты квантовой механики показывают, что в случае системы взаимодействующих электронов наиболее выгодным может быть состояние системы, когда спиновые магнитные моменты ориентированы одинаковым образом. Это говорит о наличии самопроизвольной намагниченности в ферромагнитных телах в отсутствия внешнего магнитного поля.

При нулевой напряженности магнитного поля термодинамически устойчивому состоянию макрообразца согласно классической термодинамике отвечает размагниченное состояние, ибо, в противном случае, на поверхности образца имеется магнитное поле, с которым связана положительная энергия. Обменное взаимодействие стремится создать в образце намагниченность. В результате «борьбы» этих тенденций происходит разбиение ферромагнитного образца на области однородной намагниченности (домены).

Первое начало термодинамики для ферромагнитного тела можно записать в виде

,                                     (1.1)

где

– теплота, подведенная к телу

– работа, связанная с деформацией тела

– работа по намагничиванию тела

Соотношение (1.1) для стержня длиной L можно переписать в виде:

,                        (1.2)

где T и S – температура и энтропия соответственно;

x – сила упругости;

p – внешнее давление;

V – объем стержня;

H и M – напряженность магнитного поля и намагниченность образца;

Экспериментально показано, что объемная магнитострикция в большинстве случаев пренебрежимо мала. Это значит, что в (1.2) , поэтому

                                        (1.3)

Из (1.3) следует принципиальная возможность зависимости модуля Юнга от напряженности магнитного поля.

          

. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Принципиальная схема экспериментальной установки

1 - блок питания электромагнита УИП-1; 2 - амперметр; 3 - электромагнит; 4 - стабилизированный источник питания моста «Агат»; 5 - микроамперметр B7-21; 6 - кнопка включения поля, r1 - сопротивление тензометра; R3,R4 - сопротивление плечей моста (R3= 200 Ом); Rm , R22 - сравнительное плечо моста (магазины сопротивлений); R5 - балластное сопротивление; K1 , K2 - переключатели включения микроамперметра; K3 - переключатель, включения тензометров в мостовую схему.

Рис. 1

Тензометрический метод измерения магнитострикций заключается в следущеи. На поверхности исследуемого образца приклеивается тензометрический датчик. Тензометр представляет собой тонкую  проволочку из нихрома, приклеенную на рисовую бумагу клеем, обеспечивающим электрическую изоляцию проволочки. Сверху . проволочка также покрывается рисовой бумагой.

При изменении длины образца под действием магнитного поля проволочка также изменяет свою длину. Возникающие изменения сопротивления(из-за изменения длины проволочки) измеряются мостовой схемой, в нулевой цепи которой включен микроамперметр высокой чувствительности!. Принципиальная схема установки приведена на рис.2.1. Сопротивление каждого тенхорометрического датчика R1 составляет 200 Ом. Питание мостовой схемы осуществляется через источник постоянного напряжения типа "Агат".

Магнитное поле создается электромагнитом 3. Напряженность магнитного поля Н определяется по градуировочной кривой зависимости Н от тока электромагнита I. Питание электромагнита осуществляется универсальным блоком питания УИП-1 1. Регулировка тока электромагнита осуществляется изменением выходного напряжения блока питания 1.

Величина линейной магнитострикции определяется из формулы для тока, протекающего через микроамперметр 5:

. МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

3.1. Задание

3.1.1. настоящей работе необходимо определить величину линейной магнитострикции двух образцов – поликристаллического никеля и прессированного никелевого порошка – как функцию напряженности магнитного поля.

3.1.2.Построить графические зависимости

3.1.3. Ввести образец 1и зафиксировать его положение в магните.

Переключатель K3 перевести в положение Т. При отключенном токе электромагнита установить мост вблизи равновесия, для чего включить переключатель K2  «грубо» и, изменяя сопротивление R22 установить на нуль показания микроампермтра B7-21. Затем, включив переключатель К1  «точно», повторить установку нуля.

3.1.4. Записать значение сопротивлений R21 и R22 , затем увеличить R22 на величину 20 Ом и записать показания микроамперметра.

3.1.5. Изменяя ток источника питания от 0 до 300 мА с шагом 20 мА, записать соответствующие показания вольтамперметра.

. ОПЫТНЫЕ ДАННЫЕ И ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

4.1. ОПЫТНЫЕ ДАННЫЕ

Результаты измерений приведены в таблице.

ЗАКЛЮЧЕНИЕ

В настоящей работе нами был изучен объемный магнитострикционный эффект. Проведено измерение тока моста в зависимости от тока, протекающего через электромагнит. Изучена закономерность изменения длины образца при увеличении напряженности окружающего электрического поля. Построен график зависимости .


 

А также другие работы, которые могут Вас заинтересовать

1088. Основные расчеты при проектировании паровой турбины 328 KB
  Построение процесса расширения водяного пара в проточной части турбины и оценки его расхода. Расчет числа ступеней и распределение теплоперепадов по ступеням турбины. Выбор частоты вращения валопровода турбоагрегата и числа его ЦНД.
1089. Обеспечение надежности основных элементов паровых турбин. Выбор конструкции роторов 915 KB
  Конструкции уплотнений паровых турбин. Расчет осевых усилий и способы их компенсации. Пример конструкции паровой турбины. Схема разгрузки осевого подшипника. Статическая прочность рабочих лопаток турбинных ступеней. Конструкции роторов паровых турбин.
1090. Особенности переменных режимов работы паровой турбины 792 KB
  Общая характеристика переменных режимов. Переменный режим работы турбинных решеток. Изменение степени реактивности от расчетного значения. Треугольники скоростей для последней ступени при изменении давления. Распределение давлений и теплоперепадов по ступеням турбины при переменном режиме ее эксплуатации.
1091. Влияние начальных и конечных параметров водяного пара на мощность паровых турбин 228 KB
  Влияние начального давления на мощность турбин. Относительное изменение внутренней мощности паровой турбины. Влияние начальной температуры пара и его температуры после промежуточного перегрева на мощность турбины. Влияние конечного давления пара на мощность турбины. Универсальная кривая приращения мощности от давления в конденсаторе вида.
1092. Переменные режимы эксплуатации паровых турбин энергоблоков ТЭС 1.56 MB
  Характеристика переменных режимов ТЭС. Пример графика электрической нагрузки энергосистемы. Маневренность турбоагрегатов и программы регулирования энергоблоков ТЭС. Холостой ход турбоагрегата. Моторный режим. Режим горячего вращающегося резерва. Реализация перегрузочных режимов в турбоустановках.
1093. Системы парораспределения паровых турбин. Сопловое и дроссельное парораспределение 651 KB
  Общая характеристика систем парораспределения. Общий характер суточного графика нагрузок энергосистемы. Схема основных паропроводов турбоустановки К-210-12,8 ЛМЗ. Дроссельное парораспределение
1094. Обводное парораспределение. Регулирование мощности способом скользящего начального давления 340 KB
  Обводное (байпасное) парораспределение. Выбор способа парораспределения паровых турбин. Регулирование мощности энергоблоков способом скользящего давления. Особенности перевода энергоблока на скользящее начальное давление.
1095. Математические модели и синтез цифровых нерекурсивных фильтров 200.5 KB
  Общие характеристики цифровых фильтров. Математические модели цифровых нерекурсивных фильтров. Методика синтеза цифровых нерекурсивных фильтров. Алгоритм Ремеза для построения оптимального цифрового нерекурсивного фильтра.
1096. Математические модели и синтез цифровых рекурсивных фильтров 1.61 MB
  Математические модели цифровых рекурсивных фильтров. Методика синтеза цифровых рекурсивных фильтров. Численное исследование методики синтеза цифровых рекурсивных фильтров.