12567

ТЕПЛОЕМКОСТЬ КРИСТАЛЛИЧЕСКИХ ТЕЛ

Лабораторная работа

Физика

ОТЧЕТ по лабораторной работе №3 ТЕПЛОЕМКОСТЬ КРИСТАЛЛИЧЕСКИХ ТЕЛ ВВЕДЕНИЕ Цель работы ознакомление с микроскопической теорией теплоемкости кристаллических тел ознакомление с установкой для измерения теплоемкости и измерение теплоемкости двух образцов. ...

Русский

2013-05-02

653 KB

9 чел.

ОТЧЕТ

по лабораторной работе №3

ТЕПЛОЕМКОСТЬ КРИСТАЛЛИЧЕСКИХ ТЕЛ

ВВЕДЕНИЕ

Цель работы – ознакомление с микроскопической теорией теплоемкости кристаллических тел, ознакомление с установкой для измерения теплоемкости и измерение теплоемкости двух образцов.

. ТЕОРИЯ

Теплоемкость представляет собой физическую характеристику тела и определяется отношением подведенного в некотором термодинамическом процессе тепла к вызванному этим теплом изменению температуры тела. Помимо свойств самого тела теплоемкость зависит от процесса подвода тепла.

Для кристаллических тел теплоемкости Ср и Сv отличаются очень мало и при первом приближении их можно считать совпадающими:

   

Для того чтобы теоретически получить выражение для теплоемкости кристалла, необходимо воспользоваться какой-либо динамической моделью кристалла. В первом приближении можно принять, что атомы (или ионы) в узлах кристаллической решетки совершают малые (тепловые) колебания около некоторых положений равновесие. Если считать, что каждый атом (ион) имеет три колебательных степени свободы, то весь кристалл, состоящий из N атомов, можно рассматривать как совокупность 3N линейных гармонических осцилляторов, имеющих одинаковую частоту колебаний.

Тогда дли энергии такого кристалла получим выражение;

Е = 3N е,                   (1.2)

где е - средняя энергия одного осциллятора. В классическом приближении:

, тогда E=3NkT и .

Переходя к молярной теплоемкости, получаем C=3N0k=3R.    (1.3)

Мы получили известный закон Дюлонга и Пти, согласно которому теплоемкость кристаллических тел одинакова и не зависит от температуры. Рассчитанная по формуле (1.3) величина теплоемкости находится в хорошем согласии с экспериментом при достаточно высоких температурах.

Однако на этой модели невозможно объяснить резкое уменьшение теплоемкости при низких температурах.

Дебай сопоставил осцилляторам не колебания отдельных атомов, а собственные упругие колебания твердого тела как целого. Он предложил спектр колебаний твердого тела трактовать как спектр однородной упругой среды. При этом для сохранения соответствия с числом 3N степеней свободы число независимых упругих колебаний (волн) тела считается равным 3N. Теперь для энергии кристалла вместо (1.1) следует записать выражение

. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Принципиальная схема экспериментальной установки

1 - образцы; 2 - колпак; 3 - фланец; 4 - электрический разъем; 5 - токовые и потенциальные выводы; 6 - патрубок вакуумной откачки калориметра

Рис. 1

Экспериментальная установка состоит из вакуумной системы, вакуумного калориметра и электрической части.

Устройство вакуумного калориметра показано на рис.1,

С целью уменьшения теплоотдачи от образцов 1 объем под колпаком 2 вакуумного калориметра откачивается.

Температура   образцов   измеряется   с   помощью медьконстантановых термопар, «горячие» спаи которых закреплены внутри образцов, а «холодные» спаи помещены в термостат То , температура которого поддерживается травной 0°С (температура таяния льда). ЭДС термопар измеряют цифровым вольтметром.

Нагрев образцов осуществляется с помощью нагревателей H1 и H2, изготовленных из манганиновой проволоки диаметром 0,00012 м, по которым пропускается электрический ток от регулируемого источника питания "Агат". Нагреватели навиты на слюдяную изоляцию и помещены внутрь образцов.  Падение напряжения на нагревателях  и  образцовом проволочном сопротивлении Ro=(l,015±0,001) Ом во время нагрева образцов измеряют тем же цифровым вольтметром В7-21. Время нагрева образцов отсчитывается по цифровому электронному секундомеру СЭЦ-100.

Откачка вакуумного калориметра осуществляется с помощью   форвакуумного насоса ЗНВР-Д до давления 0,01 мм рт.ст.

. МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

3.1. Задание

3.1.1. Ознакомиться с теорией теплоемкости кристаллических тел и инструкциями к приборам.

3.1.2. Произвести экспериментальные измерения

3.1.3. Обработать экспериментальные данные

3.1.4. Провести сравнения измеренной величины с данными, полученными по формуле Дебая, а также с табличными данными .

3.2. Методика измерений

После откачки вакуумного калориметра включают нагрев первого образца (секундомер СЭЦ-100 отсчитывает время нагрева образца) и с помощью цифрового вольтметра измеряют падение напряжения сначала на нагревателе, потом на образцовом сопротивлении R0. После отключения нагрева (на секундомере делают сброс времени нагрева, и он начинает показывать время остывания образца) с помощью того же вольтметра измеряют ЭДС термопары через определенные промежутки времени.


. ОПЫТНЫЕ ДАННЫЕ И ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

4.1. ОПЫТНЫЕ ДАННЫЕ

Результаты измерений приведены в таблице.

Таблица

Опытные данные
Рис.2


 (1)

 (2)

4.2. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

При обработке полученных результатов методом наименьших квадратов получаем для функции вида ln(T-T0)=ln-Kt (рис. 2) значения коэффициентов и их погрешностей:

  1.  A= (-3,30,1)*10-4;    B= (1,290.01).
  2.  A= (-1,10.1)*10-4;    B= (0.710.01).

Мы можем вычислить С используя найденный коэффициент А:

  1.  С1 = 19,681,03
    С2 = 19,58
    1,03
  2.  С1 = 21,911,63
    С2 = 21,88
    1,63

ЗАКЛЮЧЕНИЕ

В настоящей работе нами были изучена микроскопическая теория теплоемкости кристаллических тел. Проведено измерение температуры двух различных образцов в зависимости от времени. Результаты обработаны методом наименьших квадратов. Были экспериментально определены молярные теплоемкости образцов.


 

А также другие работы, которые могут Вас заинтересовать

41854. Использование систем проверки орфографии и грамматики. Форматирование текста 201.77 KB
  Форматирование текста Цель: научиться использовать системы проверки орфографии и грамматики форматировать текст. Обратите внимание что в раскладке продуктов левый край ровный но текст отодвинут от левого края. Задание: Набрать следующий текст: Тесто рассыпчатое 400 г муки 200 г масла 05 стакана воды Растереть масло добавить муку воду всыпать 05 чайной ложки соли и замесить тесто. Порядок выполнения задания №2: Заголовок выровнять по центру с помощью элемента вкладки Главная шрифт полужирный вкладки Главная разрядка 3 пт Команда:...
41855. Ознакомление с устройством и функционированием счётчиков и испытание синхронного суммирующего, реверсивного и десятичного счётчиков 576.67 KB
  Между собой ячейки счётчика соединяют таким образом чтобы каждому числу импульсов соответствовали состояния 1 или 0 определенных ячеек. Каждый разряд счётчика может находиться в двух состояниях. Максимальное число N которое может быть записано в счётчике равно 2п 1 где п число разрядов счётчика.1 Условное изображение трехразрядного суммирующего счётчика показано на рис.
41856. Ознакомление с принципом работы и испытание интегрального цифроаналогового преобразователя 354.81 KB
  При построении устройств связывающих цифровое устройство с объектами использующими информацию в непрерывно изменяющейся форме требуется преобразование информации из аналоговой формы в цифровую и из цифровой в аналоговую. называют цифро-аналоговым преобразователем ЦАП. Сменяющиеся входные цифровые коды обуславливают сменяющееся ступенчатое напряжение на выходе L идеальная передаточная характеристика ЦАП. ЦАП с весовыми двоичновзвешенными сопротивлениями рис.
41857. АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ 234.35 KB
  Входным сигналом АЦП в течение некоторого промежутка времени t является постоянное напряжение равное отсчёту uвхkt входной аналоговой функции uвх. За это время на выходе АЦП формируется цифровой обычно двоичный код соответствующий дискретному отсчёту напряжения uвхkt. Количественная связь для любого момента времени определяется соотношением где u шаг квантования входного аналогового напряжения uвх; i погрешность преобразования напряжения uвхkt на данном шаге. Процесс квантования по уровню дискретизированной функции uвхkt...
41858. Изучение и анализ конструкций рамы 95.3 KB
  Ознакомились с устройством рамы различных автомобилей, научились анализировать их конструктивные особенности.
41860. Окислительно-восстановительное титрование. Иодометрическое определение пероксида водорода. Иодометрическое определение растворённого в воде кислорода 65.63 KB
  Сформировать умения по стандартизации раствора тиосульфата натрия; выполнению иодометрического определения пероксида водорода; иодометрического определения растворенного в воде кислорода. При этом к определяемому веществу добавляют взятое в заведомом избытке точное количество стандартного раствора иода. Какую среду сильнокислую слабокислую должен иметь раствор после добавления серной кислоты Почему при добавлении крахмала амилозы к раствору иода появляется синее окрашивание Какие ещё вещества могут взаимодействовать с иодом...
41861. Определение удельной теплоты плавления олова 286.55 KB
  Температура при которой вещество плавится называется температурой плавления вещества. Температура плавления для данного вещества при одинаковых условиях одинакова. Однако это не значит что в процессе плавления к телу не надо подводить энергию.
41862. Диаграмма Парето 48.04 KB
  Например если на складе находится большое число деталей проводить контроль всех деталей без всякого различия неэффективно. Но если разделить детали на группы по их стоимости то на долю группы наиболее дорогих деталей группа А составляющих 2030 от общего числа деталей придётся 7080 от общей стоимости всех деталей. На долю группы самых дешёвых деталей группа С составляющей 4050 от всего количества деталей придётся всего 510 от общей стоимости. Контроль деталей на складе будет эффективным если контроль деталей группы А будет...