12569

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ГАЗОВ МЕТОДОМ НЕСТАЦИОНАРНОГО ПОТОКА

Лабораторная работа

Физика

ОТЧЕТ по лабораторной работе №1М ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ГАЗОВ МЕТОДОМ НЕСТАЦИОНАРНОГО ПОТОКА ВВЕДЕНИЕ Целью данной лабораторной работы является ознакомление с существующими методами измерения коэффициентов динамической вязкости газов на примере ...

Русский

2013-05-02

456 KB

9 чел.

ОТЧЕТ

по лабораторной работе №1М

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ГАЗОВ МЕТОДОМ НЕСТАЦИОНАРНОГО ПОТОКА

ВВЕДЕНИЕ

Целью данной лабораторной работы является ознакомление с существующими методами измерения коэффициентов динамической вязкости газов на примере метода нестационарного потока, а также приобретение знаний и навыков в работе с вакуумным оборудованием.

. ТЕОРИЯ

Процессы внутреннего трения в жидкостях и газах возникают в тех случаях, когда различные участки жидкости движутся с неодинаковой скоростью и происходит необратимый перенос импульса из мест с большей скоростью в места с меньшей скоростью. При этом в направлении, противоположном движению (вдоль оси z). действует отнесенная к единице поверхности соприкосновения слоев сила F, пропорциональная изменению скорости υz в перпендикулярном движению направлении (вдоль оси х):

   (1.1)

 

Здесь коэффициент пропорциональности η есть коэффициент внутреннего трения или коэффициент динамической вязкости.

Из уравнения (1.1) следует, что величина η равна силе, которую испытывает единица поверхности одного из слоев со стороны другого слоя, если градиент скорости между ними равен единице.

Макроскопические методы термодинамики не в состоянии теоретически определить значение коэффициента динамической вязкости, как и других коэффициентов переноса

Простой вывод, основанный на использовании равновесной функции распределения скоростей и впервые выполненный Максвеллом, приводит к приближенной формуле для коэффициента внутреннего трения разреженных газов, столкновения атомов или молекул которых моделируется в виде сталкивающихся твёрдых шаров, следующего вида

  (1.2)

где n - числовая плотность молекул, м'3; m - масса молекулы, кг; λ- средняя длина свободного пробега молекул, м; υ - средняя тепловая скорость молекул, м/с; σ0- диаметр молекулы, м.

Из величин, определяющих η и входящих в определения (1.2), и, не зависит от давления Р, n прямо пропорциональна давлению(т.к. P=nkT), a  обратно пропорциональна давлению. Таким образом, для разреженных газов коэффициент динамической вязкости η не зависит от давления Р. Далее, из (1.2) следует, что коэффициент η  должен зависеть от температуры так же, как и и,, т.е. пропорционально Т 1/2(для реальных газов этот показатель изменяется в пределах 0 5-0 9). Следует заметить, что для жидкостей коэффициент динамической   вязкости   ηж.   определяется   полуэмпирической   формулой  ηж = А ехр(В/Т), где А и В - некоторые, как правило, полуэмпирические константы для конкретных жидкостей. Как видно из определений, если для газов с увеличением температуры Т коэффициент динамической вязкости η увеличивается, то для жидкостей ηж  уменьшается

Приведенные соображения оказываются несправедливыми для плотных газов и жидкостей. Более того, даже для разреженных газов полученные теоретические выражения имеют ограниченную применимость Отсюда понятна важность экспериментального определения коэффициентов вязкости Насущная необходимость в сведениях по вязкости определяется, прежде всего, тем, что при расчете гидравлических сопротивлений коэффициент динамической вязкости является одним нз основных параметров

Решение уравнения Навье-Стокса , описывающего стационарное движение вдоль оси z несжимаемого газа (жидкости) в цилиндрическом капилляре радиуса R под действием градиента давления dP/dz, даёт следующее распределение скорости и, υz по радиусу капилляра:

  (1.3)

Формула (1.3) получена в предположении, что скорость газа (жидкости) на стенке капилляра равна 0, т.е. движущаяся среда «прилипает» к стенке. Если для жидкости такое предположение правомерно, то для газа оно не вполне корректно по следующим физическим соображениям, которые подтверждаются экспериментально.

Выделим вблизи стенки на расстоянии средней длины свободного пробега Х единичную площадку, параллельную стенке. Предполагается, что в слое возле стенки толщиной Л, частицы между собой не сталкиваются. Из общей физики известно, что число молекул, пересекающих единичную площадку в том и другом направлениях за единицу времени, равно . Таким образом, полный перенос импульса в направлении движения вдоль оси z через единичную площадку можно записать в виде , где - средние скорости молекул, отраженных от стенки и падающих на стенку соответственно. Этот перенос импульса эквивалентен силе, с которой газ, расположенный с отрицательной стороны площадки, действует на газ с положительной стороны (за положительное обычно выбирается направление единичного нормального вектора, проведённого от единичной площадки на стенке в сторону газа). Эта сила равна ньютоновской вязкой силе F:. Поэтому можно записать

  (1.4)

Средняя скорость газа у стенки может быть принята как средняя скорость для двух групп (отражённых и падающих) молекул и равная .

Значение скорости  зависит от типа взаимодействия молекул со стенкой. В простейшем случае, когда на стенке происходит диффузное рассеяние (равновероятное во все стороны с температурой стенки).

Если  ввести величину σ, значение которой для данного вывода равно 1, а полученное при строгом теоретическом анализе для твердых сферических молекул равно ~1.13, то распределение скорости в цилиндрическом капилляре имеет вид:

  (1.5)

Величину σ называют константой скольжения газа на стенке.

Если (1.5) умножить на элементарную площадку поперечного сечения капилляра dS = rdrdφ и полученное выражение проинтегрировать, то можно получить следующую формулу для определения объёмного расхода газа в цилиндрическом капилляре Q,:

  (1.6)

. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Принципиальная схема экспериментальной установки

1-емкостной датчик давления, 2-образцовый вакумметр, 4- форвакуумный насос; 3,5,11-вентили; 6-запирающее устройство, 7-затвор; 8-рабочие объемы; 9-перегородка; 10-капиляр; 12-байпасный кран, 13-сильфонное устройство; 14-мембрана из бериллиевой бронзы; 15-диск-электрод, 1б-г LС-генератор; 17-частотомер.

Рис. 1

Измерение абсолютного давления осуществляется с помощью образцового вакуумметра 2 класса точности 0.16.

Откачка газа из установки осуществляется через вентили 3 и 5 при закрытом вентиле 11 и открытом байпасном кране 12 с помощью форвакуумного насоса 4. Напуск газа в вискозиметр производится с помощью вентиля 11 при открытом байпасном кране 12

. МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

3.1. Задание

3.1.1 .Ознакомиться с теорией и методикой измерений расхода газа.

3.1.2.Измерить расход газа через капилляр для двух давлений (75 и 112 мм рт.ст.). Для каждого давления провести три измерения.

3.1.3.Методом наименьших квадратов вычислить расходы и определить среднее значение коэффициента динамической вязкости предложенного газа.

3.1.4. Оценить случайную и систематическую погрешности в измерении коэффициента динамической вязкости.


. ОПЫТНЫЕ ДАННЫЕ И ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

4.1. ОПЫТНЫЕ ДАННЫЕ

Результаты измерений приведены в таблице.

4.2. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

 

 

ЗАКЛЮЧЕНИЕ

В настоящей работе нами был определен коэффициент вязкости воздуха методом нестационарного потока (метода капилляра). Полученное значение коэффициента вязкости воздуха η=(1.835+0.026)*1011 согласуется с теоретическими расчетами в пределах погрешности. Данные были получены при значениях давления 75 и 112 мм. рт. ст.


 

А также другие работы, которые могут Вас заинтересовать

39772. Простой драйвер, посылающий в приложение адреса своих ха 62.5 KB
  Для того чтобы приложение могло запросить у драйвера выполнение конкретного действия из числа предусмотренных в драйвере в качестве одного из параметров этой функции выступает код действия в данном случае IOCTL__DDR. Процедура драйвера вызываемая функцией Windows DeviceIoControl должна проанализировать поступивший в драйвер код действия и передать управление на соответствующий фрагмент драйвера. В программе драйвера для формирования кода действия использован макрос CTL_CODE который определен в файле NTDDK.
39773. Написание драйверов для Windows NT 4.0 442.5 KB
  Поддерживающие пакетный вводвывод с повторно используемыми I O request pckets IRPs запросы вводавывода. 3 показан стандартный цикл работы драйвера заключающийся в обработке запроса на прерывание IRP. Disptch NTSTTUS PDRIVER_DISPTCH IN PDEVICE_OBJECT DeviceObject IN PIRP Irp ; Каждый драйвер должен иметь по крайней мере одну процедуру Disptch. StrtIo или Queuemngement VOID PDRIVER_STRTIO IN PDEVICE_OBJECT DeviceObject...
39774. Общие сведения о драйверах устройств в системе Windows 925 KB
  Наоборот если в UNIX можно взять исходники ядра и помотреть как там пишутся драйвера то в Windows это вряд ли будет возможным. Несмотря на всю ее просто ту драйвера конечно присутствовали и в ней. Практически все дело ограничивалось накoпителями дисководами CDROM приводами винчестерами да элементарнейшими драйверами клавиатуры и дисплея. В нем рассматриваются вопросы написания простого драйвера PCIустройства под Win 98 ME 2000 с использованием архитектуры драйверов WDM и пакета NuMeg DriverStudio.
39775. Виртуальные драйверы и виртуальные машины Windows 119 KB
  Основное назначение виртуального драйвера виртуализация устройства т. Разработка нового виртуального драйвера может понадобиться при установке на компьютер новой аппаратуры или нового программного обеспечения предназначенного для обслуживания других приложений которая будет использоваться в многозадачном режиме и для которой в системе Windows не предусмотрено средств виртуализации. В первом случае речь идет о приложениях работающих в плоской модели памяти на уровне привилегий 3 это характерно для 32разрядных приложений Windows;...
39776. ЭКОНОМИКА СТРОИТЕЛЬСТВА. УЧЕБНИК 4.49 MB
  Помимо традиционных тем, такие как ресурсы отрасли, себестоимость, прибыль и рентабельность в строительстве, в учебном пособии представлены новые материалы по бизнес-планированию, экономической безопасности предприятий отрасли, SWOT и STEP анализу.
39777. Понятие об уроке технологии. Особенности уроков технологии 107.5 KB
  Перспективный план отражает: Объект труда Практическую работу Домашнюю подготовку учащихся Технические средства обучения Раздаточный материал Учебнонаглядные пособия Лабораторные работы Контрольные работы зачеты защиту проектов Инструктаж по технике безопасности Хороший планконспект урока – условие высокого уровня учебной работы педагога и ученика. Правильный подбор учебного материала для урока в целом и каждой его части изложение и закрепление теоретического материала организация практической работы учащихся и т. Материал подбирается...
39778. Первые преобразования большевиков 53.5 KB
  II съезд Советов в отсутствие правых эсеров меньшевиков представителей других социалистических партий они покинули заседание протестуя против свержения Временного правительства принял Декрет о мире выход России из войны Декрет о земле ликвидация помещичьего землевладения передача земли крестьянам на уравнительных началах Декрет о власти установление власти Советов образование Совета Народных Комиссаров во главе с В. Исполнительным органом власти стал ВЦИК в который были избраны большевики и левые эсеры. Наконец триумфальное...
39779. Гражданская война в России 1918 1922 63 KB
  Гражданская война – всегда тяжелейшая социальная катастрофа достаточно напомнить что в годы Гражданской войны в США американцы потеряли убитыми больше чем в годы Второй мировой войны. В полотно Гражданской войны вплетены и различные религиозные национальные культурные противоречия и образы доведенные иногда до кульминации эмоциональным накалом того времени. Гражданская война была и результатом нерешенных проблем ускоренной российской модернизации начала XX века и мирового катаклизма в лице Первой мировой войны и духовного голода...
39780. Индустриализация и коллективизация в СССР 73.5 KB
  Индустриализация и коллективизация в СССР Курс на форсированную индустриализацию В аграрной стране средства можно найти внутри страны перекачивая их в тяжелую промышленность из легкой промышленности и сельского хозяйства. на XV съезде ВКПБ возобладал курс на форсирование индустриализации: за десять лет пробежать расстояние в 50 100 лет на которые отстал СССР от передовых стран Запада. Ценой неимоверных усилий СССР обогнал некоторые крупнейший государства мира.