12569

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ГАЗОВ МЕТОДОМ НЕСТАЦИОНАРНОГО ПОТОКА

Лабораторная работа

Физика

ОТЧЕТ по лабораторной работе №1М ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ГАЗОВ МЕТОДОМ НЕСТАЦИОНАРНОГО ПОТОКА ВВЕДЕНИЕ Целью данной лабораторной работы является ознакомление с существующими методами измерения коэффициентов динамической вязкости газов на примере ...

Русский

2013-05-02

456 KB

9 чел.

ОТЧЕТ

по лабораторной работе №1М

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ГАЗОВ МЕТОДОМ НЕСТАЦИОНАРНОГО ПОТОКА

ВВЕДЕНИЕ

Целью данной лабораторной работы является ознакомление с существующими методами измерения коэффициентов динамической вязкости газов на примере метода нестационарного потока, а также приобретение знаний и навыков в работе с вакуумным оборудованием.

. ТЕОРИЯ

Процессы внутреннего трения в жидкостях и газах возникают в тех случаях, когда различные участки жидкости движутся с неодинаковой скоростью и происходит необратимый перенос импульса из мест с большей скоростью в места с меньшей скоростью. При этом в направлении, противоположном движению (вдоль оси z). действует отнесенная к единице поверхности соприкосновения слоев сила F, пропорциональная изменению скорости υz в перпендикулярном движению направлении (вдоль оси х):

   (1.1)

 

Здесь коэффициент пропорциональности η есть коэффициент внутреннего трения или коэффициент динамической вязкости.

Из уравнения (1.1) следует, что величина η равна силе, которую испытывает единица поверхности одного из слоев со стороны другого слоя, если градиент скорости между ними равен единице.

Макроскопические методы термодинамики не в состоянии теоретически определить значение коэффициента динамической вязкости, как и других коэффициентов переноса

Простой вывод, основанный на использовании равновесной функции распределения скоростей и впервые выполненный Максвеллом, приводит к приближенной формуле для коэффициента внутреннего трения разреженных газов, столкновения атомов или молекул которых моделируется в виде сталкивающихся твёрдых шаров, следующего вида

  (1.2)

где n - числовая плотность молекул, м'3; m - масса молекулы, кг; λ- средняя длина свободного пробега молекул, м; υ - средняя тепловая скорость молекул, м/с; σ0- диаметр молекулы, м.

Из величин, определяющих η и входящих в определения (1.2), и, не зависит от давления Р, n прямо пропорциональна давлению(т.к. P=nkT), a  обратно пропорциональна давлению. Таким образом, для разреженных газов коэффициент динамической вязкости η не зависит от давления Р. Далее, из (1.2) следует, что коэффициент η  должен зависеть от температуры так же, как и и,, т.е. пропорционально Т 1/2(для реальных газов этот показатель изменяется в пределах 0 5-0 9). Следует заметить, что для жидкостей коэффициент динамической   вязкости   ηж.   определяется   полуэмпирической   формулой  ηж = А ехр(В/Т), где А и В - некоторые, как правило, полуэмпирические константы для конкретных жидкостей. Как видно из определений, если для газов с увеличением температуры Т коэффициент динамической вязкости η увеличивается, то для жидкостей ηж  уменьшается

Приведенные соображения оказываются несправедливыми для плотных газов и жидкостей. Более того, даже для разреженных газов полученные теоретические выражения имеют ограниченную применимость Отсюда понятна важность экспериментального определения коэффициентов вязкости Насущная необходимость в сведениях по вязкости определяется, прежде всего, тем, что при расчете гидравлических сопротивлений коэффициент динамической вязкости является одним нз основных параметров

Решение уравнения Навье-Стокса , описывающего стационарное движение вдоль оси z несжимаемого газа (жидкости) в цилиндрическом капилляре радиуса R под действием градиента давления dP/dz, даёт следующее распределение скорости и, υz по радиусу капилляра:

  (1.3)

Формула (1.3) получена в предположении, что скорость газа (жидкости) на стенке капилляра равна 0, т.е. движущаяся среда «прилипает» к стенке. Если для жидкости такое предположение правомерно, то для газа оно не вполне корректно по следующим физическим соображениям, которые подтверждаются экспериментально.

Выделим вблизи стенки на расстоянии средней длины свободного пробега Х единичную площадку, параллельную стенке. Предполагается, что в слое возле стенки толщиной Л, частицы между собой не сталкиваются. Из общей физики известно, что число молекул, пересекающих единичную площадку в том и другом направлениях за единицу времени, равно . Таким образом, полный перенос импульса в направлении движения вдоль оси z через единичную площадку можно записать в виде , где - средние скорости молекул, отраженных от стенки и падающих на стенку соответственно. Этот перенос импульса эквивалентен силе, с которой газ, расположенный с отрицательной стороны площадки, действует на газ с положительной стороны (за положительное обычно выбирается направление единичного нормального вектора, проведённого от единичной площадки на стенке в сторону газа). Эта сила равна ньютоновской вязкой силе F:. Поэтому можно записать

  (1.4)

Средняя скорость газа у стенки может быть принята как средняя скорость для двух групп (отражённых и падающих) молекул и равная .

Значение скорости  зависит от типа взаимодействия молекул со стенкой. В простейшем случае, когда на стенке происходит диффузное рассеяние (равновероятное во все стороны с температурой стенки).

Если  ввести величину σ, значение которой для данного вывода равно 1, а полученное при строгом теоретическом анализе для твердых сферических молекул равно ~1.13, то распределение скорости в цилиндрическом капилляре имеет вид:

  (1.5)

Величину σ называют константой скольжения газа на стенке.

Если (1.5) умножить на элементарную площадку поперечного сечения капилляра dS = rdrdφ и полученное выражение проинтегрировать, то можно получить следующую формулу для определения объёмного расхода газа в цилиндрическом капилляре Q,:

  (1.6)

. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Принципиальная схема экспериментальной установки

1-емкостной датчик давления, 2-образцовый вакумметр, 4- форвакуумный насос; 3,5,11-вентили; 6-запирающее устройство, 7-затвор; 8-рабочие объемы; 9-перегородка; 10-капиляр; 12-байпасный кран, 13-сильфонное устройство; 14-мембрана из бериллиевой бронзы; 15-диск-электрод, 1б-г LС-генератор; 17-частотомер.

Рис. 1

Измерение абсолютного давления осуществляется с помощью образцового вакуумметра 2 класса точности 0.16.

Откачка газа из установки осуществляется через вентили 3 и 5 при закрытом вентиле 11 и открытом байпасном кране 12 с помощью форвакуумного насоса 4. Напуск газа в вискозиметр производится с помощью вентиля 11 при открытом байпасном кране 12

. МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА

3.1. Задание

3.1.1 .Ознакомиться с теорией и методикой измерений расхода газа.

3.1.2.Измерить расход газа через капилляр для двух давлений (75 и 112 мм рт.ст.). Для каждого давления провести три измерения.

3.1.3.Методом наименьших квадратов вычислить расходы и определить среднее значение коэффициента динамической вязкости предложенного газа.

3.1.4. Оценить случайную и систематическую погрешности в измерении коэффициента динамической вязкости.


. ОПЫТНЫЕ ДАННЫЕ И ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

4.1. ОПЫТНЫЕ ДАННЫЕ

Результаты измерений приведены в таблице.

4.2. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

 

 

ЗАКЛЮЧЕНИЕ

В настоящей работе нами был определен коэффициент вязкости воздуха методом нестационарного потока (метода капилляра). Полученное значение коэффициента вязкости воздуха η=(1.835+0.026)*1011 согласуется с теоретическими расчетами в пределах погрешности. Данные были получены при значениях давления 75 и 112 мм. рт. ст.


 

А также другие работы, которые могут Вас заинтересовать

61112. ПРОСТИЙ ПРИСУДОК 206.41 KB
  Поглибити знання учнів про присудок як головний член речення, способи його вираження; сформувати вміння виділяти присудки в двоскладному реченні, визначати способи їх вираження; удосконалити вміння конструювати речення з різними за способом вираження присудками; за допомогою мовленнєво-комунікативного дидактичного матеріалу
61113. Київська Русь за наступників Ярослава 51.5 KB
  Знайомство з документом Чому це сталося Війни між правителями окремих частин однієї держави називають міжусобними записуємо у словниках. 1 Чому політика Ізяслава викликала невдоволення киян...
61114. Релігія, міфологія Давнього Єгипту 34.5 KB
  На які періоди вчені поділяють історію давнього Єгипту Коли відбулося нове об’єднання Єгипту Розкажіть про релігійну реформу Єгиптян Назвіть причини послаблення Єгипту...
61115. УСНИЙ ВИБІРКОВИЙ ПЕРЕКАЗ РОЗПОВІДНОГО ТЕКСТУ З ЕЛЕМЕНТАМИ ОПИСУ ПАМ’ЯТКИ ІСТОРІЇ ТА КУЛЬТУРИ В НАУКОВОМУ СТИЛІ 45 KB
  З того часу є і вежа заввишки 64 м з гарним бароковим шоломом; при реставрації знищено багато давніх вівтарів та інших пам’яток. На мурі катедри завішено пам’яткові кулі з облог Львова...
61116. Культура в Стародавньому Єгипті 41.5 KB
  Мета: показати розвиток архітектури, писемності, освіти, зародження наукових знань та їх вплив на історію людства; розвивати вміння робити з ілюстраціями; виховувати почуття прекрасного.
61117. ПИСЬМОВИЙ ВИБІРКОВИЙ ПЕРЕКАЗ РОЗПОВІДНОГО ТЕКСТУ З ЕЛЕМЕНТАМИ ОПИСУ ПАМ’ЯТКИ ІСТОРІЇ ТА КУЛЬТУРИ В ХУДОЖНЬОМУ СТИЛІ 50 KB
  Невеликий архітектурний комплекс Вірменського катедрального собору є питомим фрагментом Львова без якого той не був би самим собою. Мікросвітові собору притаманна аура у якій народжуються емоції здатні народжуватися тільки тут.
61118. ФЕОДАЛЬНА РОЗДРОБЛЕНІСТЬ. ПОЯВА УДІЛЬНИХ КНЯЗІВСТВ 46.5 KB
  Мета: познайомити учнів з причинами роздробленості Київської Русі; підвести їх до розуміння причин і наслідків цього процесу а саме звязку між економічними відносинами та розвитком політичної надбудови...
61119. СКЛАДЕНИЙ ДІЄСЛІВНИЙ ПРИСУДОК 382 KB
  Складений дієслівний присудок Творча трансформація Замінити прості присудки складеними дієслівними. Дослідити з яких частин складаються ці присудки. Трансформовані речення записати виділити в них присудки.
61120. Найдавніші держави Дворіччя. Давній Вавилон 59.5 KB
  Мета: дати уявлення про природно-кліматичні умови Дворіччя містадержави Месопотамії; розглянути господарське життя суспільний устрій Вавилона в період його піднесення і розквіту; ознайомити учнів із першим в історії людства збірником законів...