12652

Чисельне рішення систем диференціальних рівнянь

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторна робота №7 Чисельне рішення систем диференціальних рівнянь. Мета роботи: навчитися вирішувати системи диференціальних рівнянь за допомогою пакету С. Завдання: відтворити в пакеті MATHCAD вирішення наведених прикладів. Диференціальні рівняння що входять...

Украинкский

2013-05-02

79 KB

6 чел.

Лабораторна робота №7

Чисельне рішення систем диференціальних рівнянь.

Мета роботи: навчитися вирішувати системи диференціальних рівнянь за допомогою пакету С.

Завдання: відтворити в пакеті MATHCAD вирішення наведених  прикладів.

Диференціальні рівняння, що входять в систему, повинні мати перший Чисельне вирішення систем звичайних порядок (тобто містити лише перші похідні). Всі рівняння мають бути заздалегідь дозволені відносно похідних і записані в нормальній формі вигляду

.

Для перетворення рівнянь в нормальну форму є два основні підходи:

1. Пониження порядку рівнянь шляхом заміни змінних. Якщо вихідне диференціальне рівняння порядку q (q>1) має вигляд

,

то вводяться нові змінні pj, причому j = 1..q-1. У вихідному рівнянні виробляється серія замін:

,

а похідна вищого порядку замінюється похідною першого порядку:

.

Додається q – 2 нових рівнянь вигляду

.

Додається ще одне рівняння

.

Наприклад, рівняння

можна перетворити в систему рівнянь:

2. Приведення системи диференціальних рівнянь до явного вигляду шляхом її рішення відносно похідних. Наприклад, вирішуючи систему

відносно  і, отримаємо:

Розглянемо вирішення систем диференціальних рівнянь в MATHCAD на прикладі завдання про моделювання динаміки електричного ланцюга, показаного на мал. 16.

Динаміка описується наступною системою диференціальних рівнянь:

Мал. 16. Електричний ланцюг

де Uc - напруга на конденсаторі. Хай  ; i1(0) = i2(0) = Uc(0) = 0;  ; L1 = 0,02; L2 = 0,06; M = 0,01; R = 0,5; C = 0,01.

Рішення записується таким чином:

1. Визначаються всі константи і допоміжні функції, присутні в правій частині системи.

2. Визначається спеціальна функція, що обчислює праву частину системи. Функція має два аргументи: перший - незалежна змінна (наприклад, час t), другий - вектор поточних значень залежних змінних. Результатом функції має бути вектор, що містить значення правих частин системи, обчислених по значеннях другого аргументу функції. Вектори мають стільки елементів, скільки рівнянь в системі. При записі правих частин всі залежні змінні замінюються елементами вектора – другого аргументу, причому використовується наступне правило: нульовому елементу відповідає змінна, похідна від якої стоїть в лівій частині першого рівняння; першому елементу - змінна, похідна від якої стоїть в лівій частині другого рівняння і так далі. У наведеному далі прикладі, де другий аргумент функції позначений як Y, елементу Y0 відповідає i1 - змінна з похідної в лівій частині першого рівняння, елементу Y1 відповідає i2 - змінна з похідної в лівій частині другого рівняння, елементу Y2 відповідає UC.

3. Задається вектор початкових значень незалежних змінних.

4. Звернення до функції rkfixed. Перший аргумент - вектор початкових значень. Другий і третій - відповідно початкове і кінцеве значення незалежної змінної. Четвертий аргумент - число проміжних точок рішення (звичайне чимале число в діапазоні  ). П'ятий - ім'я функції, що обчислює праву частину системи. Функція rkfixed повертає матрицю, в нульовому стовпці якої знаходяться значення незалежної змінної, а в інших стовпцях - відповідні значення залежних змінних.

Рішення показане на мал. 17.

Мал. 17. Запис рішення задачі в MATHCAD

 

На мал. 18 показані графіки i2(t), Uc(t). Даним змінним відповідають другий і третій стовпці матриці S.

Мал. 18. Графіки i2(t), Uc(t)


 

А также другие работы, которые могут Вас заинтересовать

26493. Основные понятия теории расписаний 29.8 KB
  Задачи теории расписаний делятся на детерминированные и стохастические. К детерминированным задачам теории расписаний относятся задачи упорядочения планирования и согласования. В этом случае задачи детерминированного календарного планирования сводятся к задачам упорядочения. В некоторых классификациях к задачам теории расписания могут быть отнесены например задачи распределения в которых множество работ с заданными временными характеристиками необходимо распределить по приборам у которых заранее установлены параметры производительности.
26494. Применение метода динамического программирования в задачах принятия решений 26.55 KB
  Концептуально динамическое программирование применяется для анализа систем которые характеризуются следующими признаками: процесс функционирования системы включает последовательные этапы текущие этапы i конечный этап m. предполагается что для системы выполняется принцип отсутствия последействия. Суть этого принципа заключается в том что состояние Si зависит только от состояния системы на предыдущем этапе то есть на Si1 а так же зависит от управляющего воздействия Ui. И не зависит от предыдущих состояний системы и предыдущих...
26495. Основные типы вероятностных задач и критериев оценки решения 30.14 KB
  Например допустим рассматривается детерминированная система на вход которой через равные промежутки времени Т1 поступают работы.ожидания времени простоя на стоимость 1ой единицы времени их работы зарплата отнесенная к суммарному фонду рабочего времени. 2 Математический аппарат используемый при разработке модели ПР Для конструирования вероятностных моделей ПР примем аппарат случайных процессов: Процесс называется случайным если для каждого момента времени его состояние представляет собой случайную величину. Если переходы между...
26496. Применение теории массового обслуживания в задачах принятия решений 22.61 KB
  Характеристика дисциплин обслуживания заявок. Основные задачи теории массового обслуживания состоят в следующем: вопервых в определении законов распределения количества заявок в очереди на обслуживание вовторых оптимизация пропускной способности обслуживающих приборов втретьих – определение рациональных дисциплин выбора заявок из очереди. Таким образом СМО – это концептуальная модель основными элементами которой являются источники заявок содержание заявки обслуживающие приборы очередь заявок дисциплина обслуживания заявок.
26497. Марковские модели принятия решений 2.13 MB
  Системному аналитику или управляющему алгоритму предоставлено право выбора одной из общих стратегий Z. И каждая из этих стратегий соответствует матрицам переходных вероятностей Rij где элементы матрицы задают вероятность перехода из состояния i в котором находилась система в момент времени tn1 в состояние j в следующий момент времени. Необходимо для каждого из моментов принятия решений выбрать такую последовательность общих стратегий Z которая будет обеспечивать максимальный суммарный выигрыш от функционирования системы за N этапов. Если...
26498. Модели задач принятия решений в стратегических играх 29.79 KB
  Постановка задачи в моделях матричной игры. Кроме стратегических игр различают еще статистические и позиционные игры. Позиционные игры предполагают пошаговую последовательность принятия решений причем решение принятое на первом этапе определяет множество возможных решений на последующих. Математическое описание игры предполагает четкое определение или задание следующих факторов: правила действия сторон.
26499. Статистические и позиционные игры 30.18 KB
  Принятие решений в статистических играх. принятие решений в позиционных играх. Принятие решений в статистических играх. В теории статистических решений известен ряд методик нахождения оптимального решения.
26500. Общая постановка задачи принятия решений. Предметы и задачи дисциплины 20.05 KB
  Предметы и задачи дисциплины. Выбор способа действий метода действий зависит от класса анализируемых задач которые укрупнено можно разделить на следующие задачи: структурированные задачи. слабо структурированные задачи.
26501. Оценка полезности результатов принятия решений 23.21 KB
  Основные положения аксиоматической теории полезности.1 Постановка задачи оценки полезности результата. Одно из основных допущений при оценке полезности результатов – расчет на то что человек делает рациональный выбор.