12738

Выполнение расчетов с использованием пакета символьной математики MathCAD

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа Тема: Выполнение расчетов с использованием пакета символьной математики MathCAD Цель работы: изучить возможности пакета символьной математики MathCAD в области вычисления математических выражений использования при расчетах переменных величин различн...

Русский

2013-05-03

714.2 KB

14 чел.

Лабораторная работа

Тема: Выполнение расчетов с использованием пакета символьной математики MathCAD

Цель работы: изучить возможности пакета символьной математики MathCAD в области вычисления математических выражений, использования при расчетах переменных величин различных типов, построения графиков функций, нахождения корней уравнений, решения систем уравнений, решения задач многомерной оптимизации.

Теория к лабораторной работе:

Задание: Выполните расчеты в MathCAD.

Образец выполнения задания

  1.  Вычислите значение выражения:

Решение

Введем выражение, используя панель «Калькулятор» (чтобы открыть панель, выберем ВидПанели инструментовКалькулятор). По окончании ввода выражения поставим знак «=».

Представим результат с тремя знаками после десятичного разделителя. Для этого выполним двойной щелчок мышью по результату и выберем в открывшемся окне «Формат результата»: формат – десятичный; число десятичных знаков – 3.

  1.  Вычислите значение выражения при z=7:

Решение

Опишем переменную z, присвоив ей значение 7:

Введем выражение, используя панель «Калькулятор». По окончании ввода выражения поставим знак «=». Отформатирует результат.

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

Решение

Опишем ранжированную переменную величину i, изменяющуюся от 2 до 20, используя панель «Матрица» и панель «Вычисление» (Вид – Панели инструментов – Матрица; Вид – Панели инструментов – Вычисление) или клавишу [ ; ].

Введем начальное значение прогрессии и шаг:

Опишем арифметическую прогрессию:

Выведем значения первых 20 членов прогрессии: a=

  1.  Дайте символическую оценку предела:  

Решение

Введем предел, используя панель «Исчисление» (Вид – Панели инструментов – Исчисление).

Выполним символическую оценку, используя панель «Вычисление» (Вид – Панели инструментов – Вычисление).

  1.  Задайте функцию, вычислите ее значение при x=5, постройте график функции на отрезке [-10,10] шагом 0,05:

f(x)=x2+x

Решение

Зададим функцию:

 f(x):=x2+x 

Укажем  отрезок, на котором изображается график и в неявном виде шаг:
x:=-10,-9.95..10.

Пояснение: в такой записи -10 – начало отрезка, -9.95 – следующее значение, 10 – конец отрезка.

Построим график функции в декартовой системе координат, используя панель «Графики» (Вид – Панели инструментов – Графики).

В метке, расположенной в середине оси абсцисс, впишем х, в метке оси ординат запишем f(x). Если нужно построить несколько графиков в одной системе координат, то функции указывают через запятую, например так: f(x),g(x).

Отформатируем график функции. Для этого выполним двойной щелчок мышью внутри графика и выберем параметры: ось Х – линии сетки; ось Y – линии сетки; стиль осей – пересекающиеся.  

Вычислим значение функции при х=5:
f(5)=30

  1.  Решите уравнение несколькими возможными способами:

Решение

Опишем уравнение, используя знак «=», который находится на панели «Логический» (Вид – Панели инструментов – Логический).

Найдем решение уравнения.

1 способ:  поставим курсор внутри уравнения рядом с переменной, выберем Символика – Переменная – Решить.

2 способ: поставим курсор в конце уравнения (после 1), откроем панель «Символьная» (Вид – Панели инструментов – Символьная), выберем команду solve, введем имя переменной x (относительно которой ищется решение) в появившийся местозаполнитель.

3 способ. Найдем корень уравнения, ближайший к 0. Для этого опишем решение следующим образом:

  1.  Решите систему уравнений:

Решение

Зададим приближение к решению:

Запишем систему, используя знак «=», который находится на панели «Логический»:

Зададим поиск решений, используя символическую оценку:

  1.  Найдите точки экстремумов функций  f(x)=4-x2 +3x и значения экстремумов.

Варианты заданий

Вариант 1

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=-5:

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=3, постройте график функции:

  1.  Постройте в одной системе координат графики функции:    f(x)=sin(x)  и g(x)=2x2-6    для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  * Решите задачу многомерной оптимизации, используя MathCAD:

Для изготовления изделий двух видов имеется 100 кг металла. На изготовление одного изделия 1-го вида расходуется 2 кг, а на изделие второго вида – 4 кг металла. Требуется спланировать производство так, чтобы была обеспечена наибольшая прибыль, если отпускная стоимость одного изделия 1-го вида составляет 3 рубля, а изделия 2-го вида – 2 рубля, причем изделий 1-го вида требуется не более 40, а второго вида – не более 20.

Вариант 2

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=3:

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=4, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6   для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

На складах А и В находится по 90 т горючего. Перевозка одной тонны горючего со склада А в пункты 1, 2, 3 соответственно стоит 1, 3, 5 у.е., а перевозка одной тонны со склада В в те же пункты – соответственно 2, 5 и 4 у.е. В каждый пункт надо доставить одинаковое количество тонн горючего. Составить такой план перевозки горючего, при котором транспортные расходы будут наименьшими.

Вариант 3

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=3:

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции: f(x)=sin(x)  и g(x)=2x2-6
    для x
    ϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Необходимо ежедневно с первого склада перевозить в два магазина 50 телевизоров, а со второго склада — 70. При этом первый магазин продает за день 40 телевизоров, а второй — 80. Известны затраты на перевозку телевизоров со складов в магазины (четыре константы: 1200 у.е. при перевозке одного телевизора с первого склада в первый магазин, 1600 — с первого склада во второй магазин, 800 — со второго склада в первый магазин и 1000 — со второго склада во второй магазин). Спрашивается, как нужно организовать перевозки (найти значения переменных x1, x2, x3 и x4), чтобы затраты были минимальны.

Вариант 4

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=3:

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6    для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Пусть цех малого предприятия должен изготовить 100 изделий трех типов. Каждого изделия нужно сделать не менее 20 штук. На изделия уходят соответственно 4, 3.4 и 2 кг металла при его общем запасе 340 кг, а также по 4.75, 11 и 2 кг пластмассы при ее общем запасе 700 кг. Сколько изделий каждого типа x1, x2, и x3 надо выпустить для получения максимального объема выпуска в денежном выражении, если цена изделий составляет по калькуляции 4, 3 и 2 у.е.

Вариант 5

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=6:

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6    для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Для изготовления изделий двух видов имеется 100 кг металла. На изготовление одного изделия 1-го вида расходуется 2 кг, а на изделие второго вида – 4 кг металла. Требуется спланировать производство так, чтобы была обеспечена наибольшая прибыль, если отпускная стоимость одного изделия 1-го вида составляет 3 рубля, а изделия 2-го вида – 2 рубля, причем изделий 1-го вида требуется не более 40, а второго вида – не более 20.

Вариант 6

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=2:

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6   для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

На складах А и В находится по 90 т горючего. Перевозка одной тонны горючего со склада А в пункты 1, 2, 3 соответственно стоит 1, 3, 5 у.е., а перевозка одной тонны со склада В в те же пункты – соответственно 2, 5 и 4 у.е. В каждый пункт надо доставить одинаковое количество тонн горючего. Составить такой план перевозки горючего, при котором транспортные расходы будут наименьшими.

Вариант 7

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=10:

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6   для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Необходимо ежедневно с первого склада перевозить в два магазина 50 телевизоров, а со второго склада — 70. При этом первый магазин продает за день 40 телевизоров, а второй — 80. Известны затраты на перевозку телевизоров со складов в магазины (четыре константы: 1200 у.е. при перевозке одного телевизора с первого склада в первый магазин, 1600 — с первого склада во второй магазин, 800 — со второго склада в первый магазин и 1000 — со второго склада во второй магазин). Спрашивается, как нужно организовать перевозки (найти значения переменных x1, x2, x3 и x4), чтобы затраты были минимальны.

Вариант 8

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=3:

  1.  Выведите первые 20 членов геометрической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6   для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Пусть цех малого предприятия должен изготовить 100 изделий трех типов. Каждого изделия нужно сделать не менее 20 штук. На изделия уходят соответственно 4, 3.4 и 2 кг металла при его общем запасе 340 кг, а также по 4.75, 11 и 2 кг пластмассы при ее общем запасе 700 кг. Сколько изделий каждого типа x1, x2, и x3 надо выпустить для получения максимального объема выпуска в денежном выражении, если цена изделий составляет по калькуляции 4, 3 и 2 у.е.

Вариант 9

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=2:

  1.  Выведите первые 20 членов геометрической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6   для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Необходимо ежедневно с первого склада перевозить в два магазина 50 телевизоров, а со второго склада — 70. При этом первый магазин продает за день 40 телевизоров, а второй — 80. Известны затраты на перевозку телевизоров со складов в магазины (четыре константы: 1200 у.е. при перевозке одного телевизора с первого склада в первый магазин, 1600 — с первого склада во второй магазин, 800 — со второго склада в первый магазин и 1000 — со второго склада во второй магазин). Спрашивается, как нужно организовать перевозки (найти значения переменных x1, x2, x3 и x4), чтобы затраты были минимальны.

Вариант 10

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=:

  1.  Выведите первые 20 членов геометрической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6   для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

На складах А и В находится по 90 т горючего. Перевозка одной тонны горючего со склада А в пункты 1, 2, 3 соответственно стоит 1, 3, 5 у.е., а перевозка одной тонны со склада В в те же пункты – соответственно 2, 5 и 4 у.е. В каждый пункт надо доставить одинаковое количество тонн горючего. Составить такой план перевозки горючего, при котором транспортные расходы будут наименьшими.

Вариант 11

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=4:

  1.  Выведите первые 20 членов геометрической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6   для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Для изготовления изделий двух видов имеется 100 кг металла. На изготовление одного изделия 1-го вида расходуется 2 кг, а на изделие второго вида – 4 кг металла. Требуется спланировать производство так, чтобы была обеспечена наибольшая прибыль, если отпускная стоимость одного изделия 1-го вида составляет 3 рубля, а изделия 2-го вида – 2 рубля, причем изделий 1-го вида требуется не более 40, а второго вида – не более 20.

Вариант 12

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=3:

  1.  Выведите первые 20 членов геометрической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2+x-6  для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Пусть цех малого предприятия должен изготовить 100 изделий трех типов. Каждого изделия нужно сделать не менее 20 штук. На изделия уходят соответственно 4, 3.4 и 2 кг металла при его общем запасе 340 кг, а также по 4.75, 11 и 2 кг пластмассы при ее общем запасе 700 кг. Сколько изделий каждого типа x1, x2, и x3 надо выпустить для получения максимального объема выпуска в денежном выражении, если цена изделий составляет по калькуляции 4, 3 и 2 у.е.

Контрольные вопросы

  1.  Перечислите названия известных вам пакетов символьной математики.
  2.  Каковы основные принципы работы пакетов символьной математики?
  3.  Каким образом описываются переменные величины в пакете MathCAD?
  4.  Каким образом записываются ранжированные величины в пакете MathCAD?
  5.  Как построить график функции в MathCAD?
  6.  Как найти корни уравнения в MathCAD?
  7.  Как решить в MathCAD систему уравнений?

Рисунок 1. Образец выполнения задания 6.


 

А также другие работы, которые могут Вас заинтересовать

65816. Недостатки произношения свистящих звуков «С» - «Сь», «З» - «Зь», «Ц» (сигматизм, парасигматизм) 15.74 KB
  Правильная артикуляция: При произнесении свистящих звуков губы имеют тенденцию растягиваться в улыбке зубы сближены широкий кончик языка упирается в нижние резцы. Передняя часть спинки языка выгарбливается к верхним резцам при произнесении звука Ц она в первый момент образует смычку во второй щель.
65817. Государственная антимонопольная политика - ее цели и задачи 14 KB
  Для недопущения таких негативных процессов государственное антимонопольное регулирование осуществляется в двух направлениях: формирование антимонопольного законодательства; создание системы антимонопольных органов призванных осуществлять регулирование и контроль монополистической деятельности.
65818. Инвентаризация основных средств 21.5 KB
  Инвентаризация основных средств это проверка соответствия основных средств учетным записям о них. Одновременно с инвентаризацией собственных основных средств проверяются основные средства находящиеся в аренде.
65819. Интерполирование 344 KB
  Цель: Применяя методы интерполяции найти аппроксимацию функции заданной таблично. значения этой функции при указанных значениях аргумента х. Выполнить интерполирование и построить график зависимости интерполирующей функции от х на отрезке определенном крайними узлами таблицы.
65820. Исследование модели шинной ЛВС с маркерным доступом 810.5 KB
  Цель работы: Исследование особенностей построения и функционирования шинной ЛВС с маркерным методом доступа и определение основных характеристик сети. Определить основные характеристики ЛВС шинной топологии с маркерным методом доступа на основе исследования аналитической модели сети.
65821. Управление функциональностью ядра операционной системы 20.82 KB
  Основной частью модуля является процедура выдачи разрешения на доступ. Изначально файл полностью доступен всем пользователям, так как основное распределение доступа происходит позже. В процедуре определения возможности предоставления доступа...
65822. Настройка точки доступа 41.5 KB
  Внимание Во избежание помех между точками точки подключать по одной Соединяем точку доступа сетевым кабелем с сетевым адаптером подаем питание. Сбрасываем настройки точки.
65823. ВИМІРЮВАННЯ ПОТУЖНОСТІ В КОЛАХ ПОСТІЙНОГО ТА ОДНОФАЗНОГО ЗМІННОГО СТРУМІВ 701.5 KB
  Вимірювання потужності з допомогою амперметра вольтметра та ватметра Потужність та енергія є основними характеристиками більшості фізичних об'єктів процесів та явищ. У сучасній практиці доводиться вимірювати потужності від часток вата потужність сигналів мобільних телефонів...
65824. Итерационные алгоритмы 68 KB
  Условие задачи Спецификация программы(SRS) Тест план с результатами выполнения тестов Текст программы 1)Условия задачи: Реализовать программу: В одномерном массиве размерностью N, состоящем из чисел: 1) Найти среднее арифметическое элементов, попадающих в заданный интервал...