12738

Выполнение расчетов с использованием пакета символьной математики MathCAD

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа Тема: Выполнение расчетов с использованием пакета символьной математики MathCAD Цель работы: изучить возможности пакета символьной математики MathCAD в области вычисления математических выражений использования при расчетах переменных величин различн...

Русский

2013-05-03

714.2 KB

14 чел.

Лабораторная работа

Тема: Выполнение расчетов с использованием пакета символьной математики MathCAD

Цель работы: изучить возможности пакета символьной математики MathCAD в области вычисления математических выражений, использования при расчетах переменных величин различных типов, построения графиков функций, нахождения корней уравнений, решения систем уравнений, решения задач многомерной оптимизации.

Теория к лабораторной работе:

Задание: Выполните расчеты в MathCAD.

Образец выполнения задания

  1.  Вычислите значение выражения:

Решение

Введем выражение, используя панель «Калькулятор» (чтобы открыть панель, выберем ВидПанели инструментовКалькулятор). По окончании ввода выражения поставим знак «=».

Представим результат с тремя знаками после десятичного разделителя. Для этого выполним двойной щелчок мышью по результату и выберем в открывшемся окне «Формат результата»: формат – десятичный; число десятичных знаков – 3.

  1.  Вычислите значение выражения при z=7:

Решение

Опишем переменную z, присвоив ей значение 7:

Введем выражение, используя панель «Калькулятор». По окончании ввода выражения поставим знак «=». Отформатирует результат.

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

Решение

Опишем ранжированную переменную величину i, изменяющуюся от 2 до 20, используя панель «Матрица» и панель «Вычисление» (Вид – Панели инструментов – Матрица; Вид – Панели инструментов – Вычисление) или клавишу [ ; ].

Введем начальное значение прогрессии и шаг:

Опишем арифметическую прогрессию:

Выведем значения первых 20 членов прогрессии: a=

  1.  Дайте символическую оценку предела:  

Решение

Введем предел, используя панель «Исчисление» (Вид – Панели инструментов – Исчисление).

Выполним символическую оценку, используя панель «Вычисление» (Вид – Панели инструментов – Вычисление).

  1.  Задайте функцию, вычислите ее значение при x=5, постройте график функции на отрезке [-10,10] шагом 0,05:

f(x)=x2+x

Решение

Зададим функцию:

 f(x):=x2+x 

Укажем  отрезок, на котором изображается график и в неявном виде шаг:
x:=-10,-9.95..10.

Пояснение: в такой записи -10 – начало отрезка, -9.95 – следующее значение, 10 – конец отрезка.

Построим график функции в декартовой системе координат, используя панель «Графики» (Вид – Панели инструментов – Графики).

В метке, расположенной в середине оси абсцисс, впишем х, в метке оси ординат запишем f(x). Если нужно построить несколько графиков в одной системе координат, то функции указывают через запятую, например так: f(x),g(x).

Отформатируем график функции. Для этого выполним двойной щелчок мышью внутри графика и выберем параметры: ось Х – линии сетки; ось Y – линии сетки; стиль осей – пересекающиеся.  

Вычислим значение функции при х=5:
f(5)=30

  1.  Решите уравнение несколькими возможными способами:

Решение

Опишем уравнение, используя знак «=», который находится на панели «Логический» (Вид – Панели инструментов – Логический).

Найдем решение уравнения.

1 способ:  поставим курсор внутри уравнения рядом с переменной, выберем Символика – Переменная – Решить.

2 способ: поставим курсор в конце уравнения (после 1), откроем панель «Символьная» (Вид – Панели инструментов – Символьная), выберем команду solve, введем имя переменной x (относительно которой ищется решение) в появившийся местозаполнитель.

3 способ. Найдем корень уравнения, ближайший к 0. Для этого опишем решение следующим образом:

  1.  Решите систему уравнений:

Решение

Зададим приближение к решению:

Запишем систему, используя знак «=», который находится на панели «Логический»:

Зададим поиск решений, используя символическую оценку:

  1.  Найдите точки экстремумов функций  f(x)=4-x2 +3x и значения экстремумов.

Варианты заданий

Вариант 1

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=-5:

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=3, постройте график функции:

  1.  Постройте в одной системе координат графики функции:    f(x)=sin(x)  и g(x)=2x2-6    для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  * Решите задачу многомерной оптимизации, используя MathCAD:

Для изготовления изделий двух видов имеется 100 кг металла. На изготовление одного изделия 1-го вида расходуется 2 кг, а на изделие второго вида – 4 кг металла. Требуется спланировать производство так, чтобы была обеспечена наибольшая прибыль, если отпускная стоимость одного изделия 1-го вида составляет 3 рубля, а изделия 2-го вида – 2 рубля, причем изделий 1-го вида требуется не более 40, а второго вида – не более 20.

Вариант 2

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=3:

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=4, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6   для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

На складах А и В находится по 90 т горючего. Перевозка одной тонны горючего со склада А в пункты 1, 2, 3 соответственно стоит 1, 3, 5 у.е., а перевозка одной тонны со склада В в те же пункты – соответственно 2, 5 и 4 у.е. В каждый пункт надо доставить одинаковое количество тонн горючего. Составить такой план перевозки горючего, при котором транспортные расходы будут наименьшими.

Вариант 3

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=3:

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции: f(x)=sin(x)  и g(x)=2x2-6
    для x
    ϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Необходимо ежедневно с первого склада перевозить в два магазина 50 телевизоров, а со второго склада — 70. При этом первый магазин продает за день 40 телевизоров, а второй — 80. Известны затраты на перевозку телевизоров со складов в магазины (четыре константы: 1200 у.е. при перевозке одного телевизора с первого склада в первый магазин, 1600 — с первого склада во второй магазин, 800 — со второго склада в первый магазин и 1000 — со второго склада во второй магазин). Спрашивается, как нужно организовать перевозки (найти значения переменных x1, x2, x3 и x4), чтобы затраты были минимальны.

Вариант 4

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=3:

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6    для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Пусть цех малого предприятия должен изготовить 100 изделий трех типов. Каждого изделия нужно сделать не менее 20 штук. На изделия уходят соответственно 4, 3.4 и 2 кг металла при его общем запасе 340 кг, а также по 4.75, 11 и 2 кг пластмассы при ее общем запасе 700 кг. Сколько изделий каждого типа x1, x2, и x3 надо выпустить для получения максимального объема выпуска в денежном выражении, если цена изделий составляет по калькуляции 4, 3 и 2 у.е.

Вариант 5

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=6:

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6    для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Для изготовления изделий двух видов имеется 100 кг металла. На изготовление одного изделия 1-го вида расходуется 2 кг, а на изделие второго вида – 4 кг металла. Требуется спланировать производство так, чтобы была обеспечена наибольшая прибыль, если отпускная стоимость одного изделия 1-го вида составляет 3 рубля, а изделия 2-го вида – 2 рубля, причем изделий 1-го вида требуется не более 40, а второго вида – не более 20.

Вариант 6

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=2:

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6   для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

На складах А и В находится по 90 т горючего. Перевозка одной тонны горючего со склада А в пункты 1, 2, 3 соответственно стоит 1, 3, 5 у.е., а перевозка одной тонны со склада В в те же пункты – соответственно 2, 5 и 4 у.е. В каждый пункт надо доставить одинаковое количество тонн горючего. Составить такой план перевозки горючего, при котором транспортные расходы будут наименьшими.

Вариант 7

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=10:

  1.  Выведите первые 20 членов арифметической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6   для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Необходимо ежедневно с первого склада перевозить в два магазина 50 телевизоров, а со второго склада — 70. При этом первый магазин продает за день 40 телевизоров, а второй — 80. Известны затраты на перевозку телевизоров со складов в магазины (четыре константы: 1200 у.е. при перевозке одного телевизора с первого склада в первый магазин, 1600 — с первого склада во второй магазин, 800 — со второго склада в первый магазин и 1000 — со второго склада во второй магазин). Спрашивается, как нужно организовать перевозки (найти значения переменных x1, x2, x3 и x4), чтобы затраты были минимальны.

Вариант 8

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=3:

  1.  Выведите первые 20 членов геометрической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6   для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Пусть цех малого предприятия должен изготовить 100 изделий трех типов. Каждого изделия нужно сделать не менее 20 штук. На изделия уходят соответственно 4, 3.4 и 2 кг металла при его общем запасе 340 кг, а также по 4.75, 11 и 2 кг пластмассы при ее общем запасе 700 кг. Сколько изделий каждого типа x1, x2, и x3 надо выпустить для получения максимального объема выпуска в денежном выражении, если цена изделий составляет по калькуляции 4, 3 и 2 у.е.

Вариант 9

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=2:

  1.  Выведите первые 20 членов геометрической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6   для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Необходимо ежедневно с первого склада перевозить в два магазина 50 телевизоров, а со второго склада — 70. При этом первый магазин продает за день 40 телевизоров, а второй — 80. Известны затраты на перевозку телевизоров со складов в магазины (четыре константы: 1200 у.е. при перевозке одного телевизора с первого склада в первый магазин, 1600 — с первого склада во второй магазин, 800 — со второго склада в первый магазин и 1000 — со второго склада во второй магазин). Спрашивается, как нужно организовать перевозки (найти значения переменных x1, x2, x3 и x4), чтобы затраты были минимальны.

Вариант 10

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=:

  1.  Выведите первые 20 членов геометрической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6   для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

На складах А и В находится по 90 т горючего. Перевозка одной тонны горючего со склада А в пункты 1, 2, 3 соответственно стоит 1, 3, 5 у.е., а перевозка одной тонны со склада В в те же пункты – соответственно 2, 5 и 4 у.е. В каждый пункт надо доставить одинаковое количество тонн горючего. Составить такой план перевозки горючего, при котором транспортные расходы будут наименьшими.

Вариант 11

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=4:

  1.  Выведите первые 20 членов геометрической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2-6   для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Для изготовления изделий двух видов имеется 100 кг металла. На изготовление одного изделия 1-го вида расходуется 2 кг, а на изделие второго вида – 4 кг металла. Требуется спланировать производство так, чтобы была обеспечена наибольшая прибыль, если отпускная стоимость одного изделия 1-го вида составляет 3 рубля, а изделия 2-го вида – 2 рубля, причем изделий 1-го вида требуется не более 40, а второго вида – не более 20.

Вариант 12

  1.  Вычислите значение выражения:

  1.  Вычислите значение выражения при z=3:

  1.  Выведите первые 20 членов геометрической прогрессии, заданной своим начальным значением и шагом:

  1.  Дайте символическую оценку предела:  
  2.  Задайте функцию, вычислите ее значение при x=, постройте график функции:

  1.  Постройте в одной системе координат графики функции:   f(x)=sin(x)  и g(x)=2x2+x-6  для xϵ[-5,5] c шагом 0,1. (образец графика см. на рис.1 в конце документа).
  2.  Решите уравнение несколькими возможными способами:

  1.  Решите систему уравнений:

  1.  Найдите точки экстремумов функций и значения экстремумов:
    (имеется точка максимума),
    (имеется точка минимума).
  2.  *Решите задачу многомерной оптимизации, используя MathCAD:

Пусть цех малого предприятия должен изготовить 100 изделий трех типов. Каждого изделия нужно сделать не менее 20 штук. На изделия уходят соответственно 4, 3.4 и 2 кг металла при его общем запасе 340 кг, а также по 4.75, 11 и 2 кг пластмассы при ее общем запасе 700 кг. Сколько изделий каждого типа x1, x2, и x3 надо выпустить для получения максимального объема выпуска в денежном выражении, если цена изделий составляет по калькуляции 4, 3 и 2 у.е.

Контрольные вопросы

  1.  Перечислите названия известных вам пакетов символьной математики.
  2.  Каковы основные принципы работы пакетов символьной математики?
  3.  Каким образом описываются переменные величины в пакете MathCAD?
  4.  Каким образом записываются ранжированные величины в пакете MathCAD?
  5.  Как построить график функции в MathCAD?
  6.  Как найти корни уравнения в MathCAD?
  7.  Как решить в MathCAD систему уравнений?

Рисунок 1. Образец выполнения задания 6.


 

А также другие работы, которые могут Вас заинтересовать

45858. Гибкие автоматизированные производства 13.12 KB
  ГПС важный компонент ГАП который харся наиболее полным охватом автоматизации всех компонентов производственного процесса. ГАП это автоматическое производство линии участок цех завод функциональная как единая целая на основе безлюдной или при минимальном участии человека технологий ГАП включает: технологическое оборудование а также складские транспортные контролирующие системв и другие компоненты на базе ЧПУ и исполнением средств вычислительной техники работа всех компонентов ГАП координируются как единое целое при...
45859. Многооперационные станки: назначение и особенности конструкции. Многооперационные станки для обработки деталей типа тела вращения и обработки корпусных деталей 13.88 KB
  Многооперационные станки: назначение и особенности конструкции. Многооперационные станки для обработки деталей типа тела вращения и обработки корпусных деталей. Многооперационные станки технологическое оборудование с повышенной автоматизацией процесса обработки заготовокмногоцелевые станки. Многооперационные станки харся высоким уровнем автоматизации основный и вспомогательных операций высокой производительностью повышенными требованиями к точности перемещения рабочих органов точность позиционирования до 5 микрон наличием...
45860. Автоматизация операций загрузки-выгрузки деталей и приспособлений на многооперационных станках 15.72 KB
  Рабочий стол многооперационного станка имеет расширенные возможности по сравнению с обычными столами станков ЧПУ в связи с дополнительной степенью подвижности: поворота вокруг горизонтальной и вертикальной осей такие столы наз. Наличие таких рабочих столов позволяет осуществлять обработку заготовок с пяти сторон под различными углами за один установ детали что значительно сокращает время изготовления и повышает качество изделия. Помимо основного рабочего стола многооперационные станки оснащаются столами спутниками а также реже столами...
45861. Устройства автоматической смены инструментов. Револьверные головки и инструментальные магазины - накопители 86.88 KB
  Устройства автоматической смены инструментов. Обязательным элементом автоматизированных и автоматических производств функционирующих на основе безлюдных технологий является автоматическая смена инструментов осуществляющаяся устройствами автоматической смены инструментов УАСИ. Возможность автоматической смены инструментов зависит от наличия достаточного количества инструментов которые может вместить базовый элемент УАСИ инструментальный накопитель от его расположения доступности наличия датчиков для контроля размера износа и поломки...
45862. Инструментальные магазины – накопители. Виды инструментальных магазинов. Кодирование и распознавание инструментов в инструментальных магазинах 320.18 KB
  Инструментальные магазины накопители. Виды инструментальных магазинов. Кодирование и распознавание инструментов в инструментальных магазинах. Основным элементом УАСИ является инструментальные магазины накопители устанавливаемые на многооперационных станках представляющих собой накопители инструментов большой емкости от 16 и более.
45863. Автоматизация загрузочных операций. Автоматизация и механизация загрузки и разгрузки. Виды загрузочно – разгрузочных устройств 16.43 KB
  Для осуществления загрузочных операций в автоматическом режиме необходимо осуществлять следующие действия: 1создать задел заготовок для обеспечения бесперебойной работы загрузочного оборудования 2осуществить пространственную ориентацию загрузочных изделий. В комплексе задач по автоматизации технологических процессов наиболее сложным является задача автоматизации и механизации загрузки и разгрузки что вызвано большим разнообразием форм и размеров заготовок и деталей а также самих процессов. ЗРУ в условиях серийного производства...
45864. Автоматический контроль. Виды контроля по формам воздействия на объект. Активный автоматический контроль 14.98 KB
  Виды контроля по формам воздействия на объект. Под устройствами автоматического контроля понимают устройства которые без вмешательства человека выполняют всю совокупность операций необходимых для выяснения действительных параметров заготовок и деталей полуфабрикатов производят измерения в процессе обработки до его начала либо после сортируют по величине отклонений действительных параметров от номинального значения а также управляет режимами работы оборудования. Для осуществления пассивного автоматического контроля широко используются...
45865. Промышленные роботы: понятие и назначение. Основные сведения о промышленных роботах. Манипуляторы и автооператоры 18.22 KB
  При обслуживании основного технологического оборудования ПР выполняют операции по загрузке заготовок и разгрузке готовых деталей или полуфабрикатов контролю смене инструментов уборке отходов производства установке и смене средств контроля в автоматическом режиме на технологическое оборудование межоперационной передаче и транспортированию складированию. В составе транспортных систем ПР могут самостоятельно осуществлять операции перемещения и доставки грузов обслуживать различные линии осуществлять операции по накоплению и контролю. Они...
45866. Инструменты для нарезания резьбы. Формообразующие движения. Особенности эксплуатации и обеспечение точности нарезаемой резьбы 103.44 KB
  Инструменты для нарезания резьбы. Особенности эксплуатации и обеспечение точности нарезаемой резьбы. Резьбы на деталях получают на сверлильных резьбонарезных и токарных станках а также накатыванием т. Инструментом для накатывания резьбы служат накатные плашки накатные ролики и накатные головки.