12802

ИЗУЧЕНИЕ СЛОЖНЫХ ЛОГИЧЕСКИХ ВЫСКАЗЫВАНИЙ

Лабораторная работа

Информатика, кибернетика и программирование

Лабораторная работа № 3 ИЗУЧЕНИЕ СЛОЖНЫХ ЛОГИЧЕСКИХ ВЫСКАЗЫВАНИЙ Цель работы: Изучить основы алгебры логики и составления сложных логических выражений. Краткие теоретические сведения Как и фундаментальные операции И ИЛИ и НЕ более сложные функции также мо...

Русский

2013-05-03

409.5 KB

5 чел.

Лабораторная работа № 3

«ИЗУЧЕНИЕ СЛОЖНЫХ ЛОГИЧЕСКИХ ВЫСКАЗЫВАНИЙ»

Цель работы: Изучить основы алгебры логики и составления сложных логических выражений.

Краткие теоретические сведения

Как и фундаментальные операции И, ИЛИ и НЕ, более сложные функции также можно представить с помощью таблиц истинности.

Таблица, которая содержит все возможные комбинации входных переменных  и соответствующие им значения выходных переменных , называется таблицей истинности или комбинационной таблицей.

Так, например, для функции  – это таблица 1.

Таблица 1 – Таблица истинности функции

А

В

С

АВ+С

0

0

0

0

0

0

1

1

0

1

0

0

0

1

1

1

1

0

0

0

1

0

1

1

1

1

0

1

1

1

1

1

Можно видеть, что  принимает значение 1 в пяти случаях (в таблице выделено жирным шрифтом). Следовательно, функция  может быть записана как

,

где каждый член соответствует одной из записей таблицы истинности. Если в результате вычисления член оказывается равным 1, то и все выражение примет значение 1.

С помощью таблицы истинности можно записать любую функцию, взяв каждую запись в качестве члена выражения. Однако при таком подходе может оказаться, что записанная функция имеет количество членов больше минимально необходимого, и, следовательно, для ее реализации понадобится больше элементов или элементы с большим количеством входов (или и то, и другое). С помощью алгебраической минимизации можно значительно сократить выражение и привести его к простейшему виду (или к любому нужному виду). Но успех применения такой минимизации самым непосредственным образом зависит от умения инженера применять соответствующие правила булевой алгебры. Существует простой визуальный метод, называемый методом карт Карно, дающий возможность определять члены логического выражения, которые можно объединить и далее упростить.

Карта Карно состоит из двухмерного массива клеток. Каждая клетка соответствует одному минтерму. Минтермы соседних клеток – все равно, по горизонтали или по вертикали – содержат одинаковые переменные. Только в одном минтерме переменная стоит в прямой форме, а в другом – в инверсной. Клетка обозначается 1 для тех минтермов, которые присутствуют в минимизируемой функции. Минимизация производиться объединением прилежащих клеток, отмеченных 1, в группу, содержащую общий член-произведение, при этом исключается переменная, которая присутствовала в минтермах в разных формах (согласно тождеству , где  – член в виде произведения переменных, а  – переменная, общая для нескольких заданных членов выражения). Причем, если два минтерма в результате объединения дают более простое произведение, то это вовсе не означает, что группа не может быть затем объединена с соседними группами того же размера.

На рисунке 1 показана карта Карно для трех переменных. Всего можно записать восемь комбинаций из трех переменных, и каждой комбинации соответствует одна клетка карты Карно. Все клетки по двум краям карты нумеруются цифрами, которые представляют используемые переменные. Здесь 0 означает инверсную (комплементарную форму) соответствующей переменной, а 1 – отсутствие инверсии.

Рисунок 1 – Карта Карно для трех переменных

Так как соседние клетки карты отличаются только одной переменной, то по верхнему краю карты нумерация будет следующей: 00, 01, 11, 10 (эта последовательность по существу представляет собой так называемый код Грэя). Обозначения карты по вертикали строятся таким же образом. В данном случае вертикаль обозначается только одной цифрой, соответствующей третьей переменной функции. Таким образом, каждая клетка идентифицируется в соответствии с обозначениями по вертикали и горизонтали. Верхняя левая клетка, например, будет обозначаться как 000, что соответствует минтерму .

Примечание 1. Код Грэя может содержать любое число разрядов. Существует простое правило для формирования состояний кода Грэя: начинать надо из нулевого состояния, а потом для получения каждого следующего выбрать самый младший разряд, изменение которого приводит к образованию нового состояния, и взять его инверсное значение.

Для некоторой логической функции, представленной с помощью карты Карно, можно записать несколько алгебраических выражений разной сложности в дизъюнктивной или конъюнктивной форме.

Примечание 2. Дизъюнктивная нормальная форма (ДНФ) — дизъюнкция конечного числа различных членов, каждый из которых представляет собой конъюнкцию отдельных переменных или их отрицаний, входящих в данный член не более одного раза. Конъюнктивная нормальная форма (КНФ) — конъюнкция конечного числа различных членов, каждый из которых представляет собой дизъюнкцию отдельных переменных или их отрицаний, входящих в данный член не более одного раза.

При этом следует руководствоваться рядом правил:

  1.  Все единицы (при записи функции в дизъюнктивной форме) и все нули (при записи в конъюнктивной форме) должны быть замкнутыми в прямоугольные контуры. Единичные контуры могут объединять несколько единиц, но не должны содержать внутри себя нулей. Нулевые контуры могут объединять несколько нулей, но не должны содержать внутри себя единиц. Одноименные контуры могут накладываться один на другой, т.е. одна и та же единица (или ноль) может входить в несколько единичных (нулевых) контуров.
  2.  Площадь любого контура должна быть симметричной относительно границ переменных, пересеченных данным контуром. Другими словами, число клеток в контуре равняется , где  – 0, 1, 2, 3, 4, …, т.е. число клеток выражается числами 1, 2, 4, 8, 16,…
  3.  Во избежание получения лишних контуров их построение следует начинать из тех единиц или нулей, которые могут войти в один контур. Лишними называются контуры, все клетки которых вошли уже в другие контуры.
  4.  В контуры можно объединять только соседние клетки, которые содержат единицы или нули. Соблюдение этого правила в особенности необходимо проверять при числе переменных, большем четырех, когда соседние клетки могут быть расположены не рядом, и потому контуры могут испытывать видимый разрыв.
  5.  Каждой единичной клетке отвечает конъюнкция входных переменных, которые определяют данную клетку. Каждой нулевой клетке отвечает дизъюнкция инверсий входных переменных, что определяют данную клетку.
  6.  В контуре, который объединяет две клетки, одна из переменных изменяет свое значение, поэтому выражение контура из двух клеток не зависти от этой переменной, а представляется всеми другими переменными. Это правило относится и к контурам, которые охватывают число клеток более двух, и имеет такую формулировку: выражения, которые отвечают контурам, не содержат тех переменных, чьи границы пересекаются площадью, ограниченной данным контуром.
  7.  Выражение логической функции может быть записано по соответствующей ей карте Карно в дизъюнктивной или конъюнктивной форме. Дизъюнктивная форма составляется в виде дизъюнкции конъюнкций, которые отвечают единичным контурам, выделенным на карте для определения функции; конъюнктивная – в виде конъюнкции дизъюнкций, которые отвечают нулевым контурам.
  8.  Для контуров, которые охватывают разное количество клеток, получаются выражения разной сложности. Поэтому для данной логической функции можно записать по ее карте Карно несколько алгебраических выражений, которые отличаются по сложности. Наиболее сложное выражение отвечает случаю, когда каждой клетке отвечает свой контур. Это выражение представляет собой СДНФ или СКНФ.
  9.  Для получения по карте Карно минимального выражения логической функции следует руководствоваться.

Кроме общих изложенных выше правил, следующим правилом: единицы или нули должны объединяться минимальным количеством наибольших контуров.

Предположим, нужно минимизировать заданную функцию

.

Карта Карно этой функции изображена на рисунке 2.

Рисунок 2 – Представление функции  с помощью карты Карно для трех переменных

В выражении пять членов, поэтому на карте пять клеток с вписанными единицами. Две из них прилегают друг к другу, следовательно, эти два члена можно сгруппировать (см. рисунок 3).

Рисунок 3 – Карта Карно функции  с объединением двух членов

Группируясь,  и  дают просто , а  и  – . Еще одна клетка карты с  не соседствует ни с какой другой клеткой с  и не может быть объединена в группу. Группы показаны на рисунке линиями, обведенными вокруг соответствующих клеток. Переменную, которую можно убрать, легко определить, глядя на обозначения клеток. В одной клетке группы такой переменной соответствует , а в соседней – . Итак, минимизированное выражение имеет вид:

.

Если в двух полученных уже сокращенных членах снова будет отличаться только одна переменная, то их можно объединить еще раз и сократить вторую переменную. Однако это проще сделать сразу при использовании карт Карно, формируя как можно большие группы таким же образом, как это делалось в случае двух прилежащих клеток. Если группа из двух клеток позволяет сократить одну переменную, то в случае группы их четырех клеток можно убрать две переменные, а из восьми – три. Так, например, для функции  карта Карно в этом случае будет выглядеть следующим образом (см. рисунок 4).

Рисунок 4 – Карта Карно функции  с объединением большой группы

В этом случае  минимизированное выражение имеет вид:

Описание лабораторной установки

Лабораторная установка представляет собой учебный стенд для изучения работы логических элементов. На лицевой панели установки нанесены изображения основных логических элементов.

Для визуального отображения сигналов на выходах логических элементов используются светодиоды. При нахождении на выходе высокого логического уровня светодиод горит, низкого логического уровня – гаснет.

В левой части лицевой панели находятся 5 переключателей, по 4 гнезда в каждом. Они предназначены для подачи высокого или низкого уровня на входы микросхем.

ВНИМАНИЕ! Если необходимо подать на какой-либо вход микросхемы низкий уровень, то обязательно подайте на него низкий уровень от какого-либо переключателя. Если вход останется не присоединенным к низкому уровню, то (по умолчанию) будет считаться, что на нем находиться высокий уровень. Схема будет работать некорректно, что приведет к ложному результату.

В левом верхнем углу лицевой панели данной лабораторной установки имеется кнопка для кратковременной проверки собранной вами схемы.

Для включения лабораторной установки используется тумблер «Сеть».

Порядок выполнения работы

  1.  Ознакомиться с методическими указаниями к лабораторной работе.
  2.  В соответствии с заданием преподавателя составить карту Карно для функции .
  3.  По полученной карте Карно составить и минимизировать логическое выражение, описывающее функцию .
  4.  Разработать схему, реализующую полученную функцию .
  5.  Собрать разработанную схему на лабораторном стенде.
  6.  Составить отчет по данной лабораторной работе.

Содержание отчета

Отчет должен включать:

  1.  Задание на разработку схемы.
  2.  Карту Карно заданной функции.
  3.  Минимизацию логического выражения, описывающего заданную функцию.
  4.  Схему, реализующую минимизированное логическое выражение.
  5.  Краткое описание работы схемы.
  6.  Вывод.

Контрольные вопросы и задания

  1.  В чем заключается минимизация функции алгебры логики с помощью карт Карно?
  2.  Приведите свойства карт Карно.


 

А также другие работы, которые могут Вас заинтересовать

81375. Теория структурного функционализма в социологии и возможность ее применения для анализа социальной работы 37.56 KB
  Структурный функционализм методологический подход в социологии и социокультурной антропологии состоящий в трактовке общества как социальной системы имеющей свою структуру и механизмы взаимодействия структурных элементов каждый из которых выполняет собственную функцию. Базовой идеей структурного функционализма является идея социального порядка то есть имманентное стремление любой системы поддержать собственное равновесие согласовать между собой различные её элементы добиться согласия между ними. Основные положения Общество...
81376. Теории социального конфликта К. Маркса и Л. Козера, их применение для анализа социальной работы 35.67 KB
  Согласно концепции Маркса именно конфликты объясняют социальные процессы и изменения именно они пронизывают жизнь общества во всех его направлениях именно конфликтами объясняется осуществление революций и переход к новому типу общества. Маркс характеризовал конфликт как естественное состояние классового основанного на частной собственности общества присущее изначально его природе. В качестве основного типа конфликта для него выступало взаимодействие между производительными силами и производственными отношениями которые на определенном...
81377. Теория символического интеракционизма при анализе социальной работы 40.33 KB
  Сходное понимание слов жестов других символов облегчает взаимодействие позволяет интерпретировать поведение друг друга. Понимая поведение друг друга люди меняют свое поведение приспосабливая свои поступки к действиям другого координируя свои действия с другими людьми обучаясь видеть себя глазами группы обучаясь учитывать ожидания других людей. Социальные ожидания экспектации влияют на поведение человека он вынужден вести себя так как требуют нормы поведения как ожидают другие люди и общество в целом реализуя те права и...
81378. Феноменологический подход в социологии. Значение положений теории А. Шюца в анализе социальной работы 38.26 KB
  Следовательно необходимо погружение в мир в котором живет человек т. в мир жизни или жизненный мир. Отсюда центральные понятия его феноменологической социологии: жизненный мир повседневный мир повседневность социальный мир. В целом это мир наполненный смыслом который придают ему люди в повседневной жизни.
81379. Познавательные возможности и особенности количественной методологии в социологии при анализе социальной работы 37.93 KB
  Организация наблюдения включает в себя определение характеристик объекта целей и задач наблюдения выбор вида наблюдения разработку программы и процедуры наблюдения установление параметров наблюдения разработку техники выполнения результатов анализ результатов и выводов. добивается максимального взаимодействия с объектом наблюдения не обнаруживая как правило своих исследовательских намерений на практике.
81380. Понятие и виды социологических исследований 34.64 KB
  Качественные методы социологии позволяют социологу понять суть какоголибо социального явления а количественные понять насколько массово часто встречаемо это социальное явление и насколько оно важно для общества. Количественные методы: социологический опрос анкетирование и интервьюирование контентанализ документов наблюдение эксперимент Качественные методы: фокус группа исследование случая кейс стади этнографические исследования неструктурированные интервью.
81381. Измерение эффективности социальной работы и типы шкал. Приведите примеры использования 36.91 KB
  Показатели эффективности социальной работы. В связи с тем что социальная работа направлена на удовлетворение социальных потребностей человека правомерно признать главным критерием эффективности социальной работы как и определяющим критерием гуманности общества полноту удовлетворения интересов отдельного человека или различных сообществ людей во всех сферах жизни. Исходя из этих особенностей следует подходить к определению критериев социальной работы.
81382. Понятие и построение выборки в социологическом исследовании социальной работы 41 KB
  Задача построения выборки возникает всякий раз когда необходимо собрать информацию о некоторой группе или большой совокупности людей. Выборка это подмножество заданной совокупности популяции позволяющее делать более или менее точные выводы относительно совокупности в целом. Первым шагом в построении любой модели отбора включая вероятностную является определение генеральной совокупности. Любую генеральную совокупность характеризует какойлибо значимый признак или набор признаков по которым мы можем отнести конкретный объект к данной...
81383. Обработка и обобщение социологической информации в социологическом исследовании 36.58 KB
  Обработка данных включает в себя следующие компоненты: Редактирование и кодирование информации. Основное назначение этого шага состоит в приведении к единой форме унификации и формализации отображение объектов некоторой предметной области с помощью символов той информации которая была получена в ходе исследования. В зависимости от методов получения первичной информации возможно применение различных приемов обработки и анализа данных.