13026

Исследование свойств стабилитрона

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лабораторная работа №3 Исследование свойств стабилитрона Цель работы: снятие основных вольт – амперных характеристик стабилитрона и исследование влияния температуры на эти характеристики. 1. Общие сведения 1.1....

Русский

2013-05-07

1.11 MB

34 чел.

Лабораторная работа №3

«Исследование свойств стабилитрона»

Цель работы: 

снятие основных вольт – амперных характеристик стабилитрона и исследование влияния температуры на эти характеристики.

1. Общие сведения

1.1. Полупроводниковый диод

Простейшим полупроводниковым прибором является диод. Он снабжен двумя электродами, называемыми анодом и катодом, и использует свойство односторонней проводимости (или вентильности) электрического перехода.

В качестве такого перехода наибольшее распространение получил p-n переход, образующийся в кристалле полупроводника на границе двух слоев,  один из которых характеризуется дырочной проводимостью (р-слой), а другой – электронной (n-слой). На границе слоев устанавливаются условия, препятствующие взаимному проникновению основных носителей заряда из одного слоя в другой.

Это объясняется тем, что при диффузии дырок, основных носителей заряда р-слоя, в n – слой и электронов, основных носителей заряда n-слоя, в р-слой по обе стороны границы образуются нескомпенсированные заряды неподвижных ионов: пришедшие в n-слой дырки нейтрализуются электронами этого слоя, в результате чего создается избыток положительных зарядов, а пришедшие в р-слой электроны нейтрализуются дырками этого слоя, в результате чего создается избыток отрицательных зарядов.

Таким образом, нескомпенсированный положительный заряд в n-слое препятствует дальнейшей диффузии дырок из р-слоя, а нескомпенсированный отрицательный заряд в р-слое препятствует диффузии электронов из n-слоя, то есть в p-n переходе создается потенциальный барьер.

Рис.1 Полупроводниковый диод: а- структурная схема, б- схемное обозначение

В диоде с p-n переходом анодный электрод соединен с р - слоем, катодный - с n- слоем, как показано на рис.1а. Схемное обозначение полупроводникового диода представлено на рис. 1б.

Вентильное свойство диода отражает его вольт-амперная характеристика, изображенная на рис. 2а. При положительном напряжении (анод находится под более высоким потенциалом, чем катод) диод открыт: под действием приложенного напряжения носители заряда преодолевают потенциальный барьер и через p-n переход протекает ток, который обусловлен переносом, главным образом, основных носителей заряда р-слоя, дырок. Падение напряжения на открытом диоде (участок I на рис.2а) мало и обычно не превышает одного вольта.

Рис. 2 Вольт-амперная характеристика полупроводникового диода:

а - при различном масштабе токов и напряжения для прямого и обратного направлений, б - при одинаковом масштабе

При отрицательном напряжении (потенциал анода ниже потенциала катода) ток диода связан с переносом неосновных носителей заряда, концентрация которых мала. Величина тока на несколько порядков меньше тока открытого диода, а напряжение в сотни раз больше. Этот факт отражен на рис. 2а разными масштабами на осях токов и напряжений для положительных и отрицательных значений параметров. Пренебрежимо малые токи при отрицательном напряжении  свидетельствуют о закрытом состоянии диода (участок II на рис. 2а).

На рис. 2б участки I и II вольт-амперной характеристики диода представлены в  одинаковом масштабе, когда можно пренебречь падением напряжения в открытом состоянии и протеканием тока – в закрытом. В первом приближении можно считать, что величина сопротивления открытого диода равна нулю, а закрытого - бесконечности.

Участок II вольт-амперной характеристики диода (рис. 2а) при увеличении отрицательного напряжения переходит в участок III, где имеет место сильный рост тока при незначительном увеличении напряжения. На этом участке в p-n переходе происходит электрический пробой, то есть лавинообразное увеличение тока. Характерной чертой такого пробоя является обратимость: при снятии напряжения и последующем его увеличении ход вольт-амперной характеристики не изменяется, прибор сохраняет свою работоспособность. Участок электрического пробоя вольт-амперной характеристики переходит в участок IV, где происходит тепловой пробой  p-n перехода, при котором нагрев кристалла приводит к разрушению перехода, в результате чего диод выходит из строя.

Участки I и II вольт-амперной характеристики на рис. 2а используются с целью выпрямления переменного напряжения, принцип которого можно проиллюстрировать на примере схемы, приведенной на рис. 3а. На вход схемы подается переменное напряжение , которое представлено синусоидой на рис. 3б временной диаграммы. В интервале фаз  на анод диода подается положительное напряжение, а на катод – отрицательное. Диод находится в открытом состоянии, и через последовательно включенную с ним нагрузку протекает ток. Если считать нулевым сопротивление открытого диода, то все подводимое к нему напряжение оказывается приложенным к нагрузке, что отражено на рис. 3в. При отрицательном полупериоде входного напряжения (интервал фаз ) диод закрыт и через него в нагрузку напряжение не проходит. Таким образом, к нагрузке подводится только положительное напряжение , временная зависимость которого представлена на рис. 3в. Поскольку оно действует в течение одного полупериода входного напряжения, схема на рис. 3а является однополупериодной.

Рис.3 Однополупериодный выпрямитель: а – схема выпрямителя; б, в – временные диаграммы, иллюстрирующие его работу

Необходимо иметь в виду, что переход диода из закрытого состояния в открытое и наоборот происходит с задержкой во времени, что объясняется инерционностью процессов накопления необходимой концентрации заряда в области p-n перехода при его открытии и рассасыванием этого заряда при закрытии.

Рис. 4. а. Схема замещения полупроводникового диода.

б. Схема, иллюстрирующая образование двойного электрического слоя в закрытом p-n переходе

На рис. 4а приведена схема замещения p-n перехода, основного элемента диода, работающего на участках I и П вольт-амперной характеристики. Наличие в схеме ключа К отражает возможность пребывания перехода в двух состояниях. Положение «а» ключа соответствует открытому состоянию, в котором переход характеризуется весьма малой величиной сопротивления. Положение «б» ключа соответствует закрытому состоянию, в котором переход эквивалентен параллельному соединению активного сопротивления очень большой величины и емкости, получившей наименование «барьерной». Эта емкость отражает факт образования двойного электрического слоя в закрытом p-n переходе, что иллюстрируется рис. 4б, которым обусловлен потенциальный барьер, препятствующий диффузии основных носителей заряда через переход.  

Надежная работа выпрямительного диода обеспечивается лишь в том случае, если он работает при электрических параметрах, величины которых не превышают допустимые значения. Эти значения приводятся в справочных данных. Такими параметрами выпрямительного диода обычно считаются:

  •  максимальное обратное напряжение, приложенное к закрытому диоду, предшествующее развитию пробоя в приборе
  •  максимально допустимые значения среднего и импульсного токов, при которых не происходит перегрева прибора в открытом состоянии.

По уровню мощности диоды подразделяются на приборы  маломощные, средней и большой мощности. В маломощных диодах величина среднего тока не превышает 0,3А, в диодах средней мощности величины тока находятся в пределах 0,3 - 10А, а в диодах большой мощности величина тока может достигать 1000А и выше.

В режиме электрического пробоя при низких напряжениях диод может пребывать в течение длительного времени. Поэтому участок III на вольт-амперной характеристике полупроводникового диода на рис. 2а можно использовать для цели стабилизации напряжения. Такой режим реализуется в специальных диодах, получивших название стабилитронов. В этих приборах обеспечивается достаточно широкий интервал анодных токов, в котором величина напряжения практически не изменяется.

1.2. Температурные свойства  полупроводниковые диодов.

На электропроводимость  полупроводниковых диодов значительное влияние оказывает температура. При повышении температуры увеличивается генерация пар носителей заряда, т.е. увеличивается концентрация носителей и проводимость растёт.

На рис. 5. для германиевого диода (Ge). видно, что токи Iпр   и  Iоьр  растут. Это объясняется усилением генерации электронов и дырок. Для Ge диодов Iоьр возрастает примерно в два раза, при повышении температуры на каждые  десять градусов.

                                                                     Рис. 5

У Si диодов при нагреве на каждые 10 градусов Iоьр  увеличивается в 2,5 раза, а напряжение эл. пробоя сначала возрастает а затем снижается.

Iпр при нагреве растёт не так сильно, как обратное. Это является следствием того, что Iпр возникает главным образом за счёт примесной проводимости, а их концентрация не зависит от температуры.

1.3. Стабилитрон. ВАХ стабилитрона.

Параметры стабилитрона

Стабилитрон это полупроводниковый прибор, напряжение на котором в области электрического пробоя при обратном смещении слабо зависит от тока в заданном его диапазоне. Стабилитрон – это кремниевый диод с большим содержанием примесей.

Стабилитрон предназначен для стабилизации напряжения. В стабилитронах при относительно небольших обратных напряжениях развивается электрический пробой (лавинный или туннельный). В этом случае изменение тока через стабилитрон происходит при почти неизменном напряжении. Если ограничить обратный ток через стабилитрон на уровне , где  – максимально допустимый обратный ток через стабилитрон, то тепловой пробой не наступает и стабилитрон может работать в режиме электрического пробоя неограниченное время. На рис. 6 приведено условное графическое обозначение стабилитрона на схемах электрических принципиальных. Геометрические размеры элементов изображения соответствуют геометрическим размерам элементов изображения диода.

Рис. 6. Обозначение стабилитрона

Основные параметры стабилитрона:

  1.   – напряжение стабилизации – напряжение на стабилитроне при некотором постоянном обратном токе.  = 3÷100В (см. рис.7);

2. – минимальный ток через стабилитрон. При минимальном токе начинается устойчивый электрический пробой;

– максимальный ток через стабилитрон. При максимальном токе гарантировано не наступает тепловой пробой;

  1.  Дифференциальное сопротивление стабилитрона: . Дифференциальное сопротивление определяется для рабочего участка ВАХ стабилитрона (участка между  и ) и составляет 0,5÷200 Ом;

Рис.7. ВАХ стабилитрона

Дифференциальное сопротивление – это параметр, характеризующий

наклон рабочего участка его ВАХ. Для выбранного участка ВАХ можно определить динамическое сопротивление: Rдин. = . Дифференциальное сопротивление стабилитрона зависит от тока, проходящего через стабилитрон. Примерный вид зависимости приведен на рис.8.

Рис 8. Дифференциальное сопротивление стабилитрона

  1.  Температурный коэффициент напряжения стабилизации:

%; где  - относительное приращение напряжения стабилизации. ТКН численно равен относительному приращению напряжения стабилизации при изменении температуры на 1 градус (Кельвина или Цельсия). ТКН может быть как положительным, так и отрицательным и зависит от напряжения стабилизации. Примерный вид зависимости ТКН от напряжения стабилизации приведен на рис.9.

 

Рис 9.

Уменьшить температурную зависимость напряжения стабилизации можно за счет последовательного включения стабилитрона и диода или двух стабилитронов, имеющих близкие по абсолютному значению, но противоположные по знаку ТКН. Также выполняют прецизионные стабилитроны, где температурная компенсация (уменьшение ТКН) достигается за счет выполнения на одном кристалле полупроводника двух (и более) p-n-переходов с равными, но противоположными по знаку ТКН.

Двустороннюю стабилизацию напряжения можно выполнить за счет встречного включения двух стабилитронов.


2. Экспериментальная часть

Рис 10. Схема лабораторной установки

Таблица 1. Прямая ВАХ стабилитрона Д814Б (при комнатной температуре)

Значение напряжения, В

Значение тока, мА

1

0,492

0,0529

2

0,457

0,0489

3

0,403

0,0432

4

0,350

0,0377

5

0,303

0,0326

6

0,251

0,0272

7

0,202

0,0220

8

0,150

0,0164

9

0,100

0,0110

10

0,050

0,0058

Таблица 2. Обратная ВАХ стабилитрона Д814Б (при комнатной температуре)

Значение напряжения, В

Значение тока, мА

1

5

13,86

2

4,5

12,27

3

4

10,65

4

3,5

9,07

5

3

7,47

6

2,5

5,85

7

2

4,27

8

1,5

2,68

9

1

1,15

10

0,5

0,064

Таблица 3. Прямая ВАХ стабилитрона Д814Б (T = 40˚C)

Значение напряжения, В

Значение тока, мА

1

0,503

0,0538

2

0,447

0,0478

3

0,400

0,0429

4

0,354

0,0380

5

0,303

0,0327

6

0,253

0,0273

7

0,201

0,0219

8

0,150

0,0164

9

0,100

0,0109

10

0,057

0,0064

Таблица 4. Обратная ВАХ стабилитрона Д814Б (T = 40˚C)

Значение напряжения, В

Значение тока, мА

1

5

13,92

2

4,5

12,29

3

4

10,68

4

3,5

9,07

5

3

7,54

6

2,5

5,91

7

2

4,31

8

1,5

2,80

9

1

1,24

10

0,5

0,072

Таблица 5. Прямая ВАХ стабилитрона Д814Б (T = 60˚C)

Значение напряжения, В

Значение тока, мА

1

0,500

0,0556

2

0,450

0,0482

3

0,400

0,0428

4

0,354

0,0397

5

0,305

0,0328

6

0,250

0,0270

7

0,207

0,0224

8

0,150

0,0162

9

0,103

0,0114

10

0,056

0,0063

Таблица 6. Обратная ВАХ стабилитрона Д814Б (t = 60˚C)

Значение напряжения, В

Значение тока, мА

1

5,04

14,10

2

4,50

12,38

3

4,00

10,76

4

3,50

9,17

5

3,00

7,58

6

2,50

6,00

7

2,00

4,44

8

1,50

2,96

9

1,00

1,35

10

0,50

0,09

График измеренной вольт – амперной характеристики стабилитрона Д814Б при разных температурных режимах приведен на рис. 11.

Вывод

В результате выполнения лабораторной работы были сняты вольт – амперные характеристики стабилитрона Д814Б при обычном режиме работы и при нагревании до температуры 40˚С и 60˚С.

Было установлено, что ток стабилитрона зависит от температуры окружающей среды. Прямой ток при нагреве стабилитрона растет не так сильно, как обратный. Это объясняется тем, что прямой ток возникает главным образом за счет примесной проводимости, а концентрация примесей не зависит от температуры.

У германиевых диодов обратный ток возрастает примерно в 2 раза при повышении температуры на каждые 10ºC.

У кремниевых диодов при нагреве на каждые 10ºС обратный ток увеличивается в 2,5 раза, а напряжение электрического пробоя при повышении температуры сначала несколько возрастает, затем уменьшается.

Список литературы

  1.  Электротехника и основы электроники/ О.А. Антонова, О.П. Глудкин, П.Д. Давидов. Под ред. О.П. Глудкина, В.П. Соколова. – М.: Высшая школа, 1998
  2.  Жеребцов И. П. Основы электроники. – Л. Энергоатомиздат, 1999

3.  Забродин Ю.С. Промышленная электроника: учебник для вузов / Ю.С.Забродин. М.: Высшая школа, 1982.

4.  Горбачев Г.Н. Промышленная электроника: учебник для вузов/ Г.Н.Горбачев, Е.Е.Чаплыгин. М.: Энергоатомиздат, 1988.

5.  Основы промышленной электроники: учеб. пособие для вузов/ под ред. В.Г.Герасимова. М.: Высшая школа, 1986.

6.  Артюхов И.И. Основы выпрямительной техники: учеб. пособие / И.И.Артюхов, М.А.Фурсаев.  Саратов: СГТУ, 2005.


d


 

А также другие работы, которые могут Вас заинтересовать

71364. Corel Draw 9.0 Преобразование формы объектов. Специальные эффекты 357.5 KB
  Инструмент Форма выделяет контур объекта и представляет его как совокупность отрезков прямых и кривых линий соединенных опорными точками узлами. Перемещение узлов меняет форму объекта воспользуйтесь контекстным меню Преобразовать в кривые.
71365. Служба доменних імен (DNS) 457 KB
  Завдання на роботу Провести настроювання первинного сервера DNS для зони згідно варіанту завдання. Визначити резервний DNS-сервер для створеної зони. Виконати процедуру передачі інформації про зону. Створити обернену зону, для локального IP 10.18.51.1.
71366. Передача поштових повідомлень. Протокол SMTP 216 KB
  Налаштувати поштовий сервер на базі MTA Postfix для обробки повідомлень для домену згідно варіанту завдання. Використовувати базові засоби запобігання пересилання небажаних повідомлень, включити підтримку «чорних списків» і синонімів поштових скриньок.
71367. Побудова VPN сервера 1.42 MB
  Коли з на реальній машині підключається VPN з’єднання доступ до Інтернету за замовченням йде через нього, так як віртуальна машина отримує Інтернет через NAT з реальної машини, перевірити працездатність роздачі Інтернету неможливо, бо відбувається замкнуте коло.
71370. Протокол передачі файлів FTP 404.5 KB
  Встановити і настроїти сервер FTP на базі vsftpd. Забезпечити можливість підключення згідно з варіантом. Анонімного користувача. У домашньому каталозі анонімного користувача створити 2 каталоги: pub і incoming. Каталог pub доступний тільки для читання, каталог incoming доступний для читання і запису.
71371. Мережева файлова система NFS 1.38 MB
  Завдання на роботу: Настроїти сервер NFS. Забезпечити можливість монтування файлових систем згідно з варіантом. Перевірити роботу NFS сервера підключивши до нього клієнт.
71372. Спільні ресурси мережі Microsoft Windows. Протоколи NetBIOS/SMB і додаток Samba 881.89 KB
  Завдання на роботу Встановити і налаштувати сервер Samba. Забезпечити можливість підключення поділюваних ресурсів згідно варіанту. Перевірити працездатність Samba сервера.