13241

Дослідження випрямляючих пристроїв

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лабораторна робота №3 Тема: Дослідження випрямляючих пристроїв Мета: 1. Вивчення принципу роботи різних типів випрямлячів. 2. Аналіз процесів у схемі випрямного діодного моста. Дослідження осцилограм вхідної і вихідної напруги для випрямного моста. Вимі

Украинкский

2013-05-11

252.5 KB

35 чел.

Лабораторна робота №3

Тема: Дослідження випрямляючих пристроїв

Мета: 1.  Вивчення принципу роботи різних типів випрямлячів.

2.  Аналіз процесів у схемі випрямного діодного моста.

  1.  Дослідження осцилограм вхідної і вихідної напруги для випрямного моста.
  2.  Вимір середнього значення вихідної напруги (постійна складова) в схемі випрямного моста.
  3.  Порівняння максимальної напруги на діодах та частоти вихідної напруги у мостовому і двопівперіодному випрямлячі.
  4.  Обчислення максимальної зворотної напруги Umax на діоді випрямного
    моста.
  5.  Вивчення впливу різних типів згладжуючих фільтрів на форму випрямленої напруги і на вихідні характеристики випрямляючих пристроїв.

Прилади й елементи

Вольтметр

Амперметр

Осцилограф

Джерело змінної напруги 120 В

Трансформатори

Діоди 1N4009

Резистори, конденсатори, котушки індуктивності

Теоретичні відомості.

Однофазні випрямлячі.

1. Однопівперіодний випрямляч.

Схема і часові діаграми напруг і струмів однопівперіодного випрямляча приведені на рис.3.1 і 3.2.

Рис.3.1.

Схема містить трансформатор ТР, в колі вторинної обмотки якого ввімкнено послідовно діод Д і опір навантаження Rн.

Якщо припустити що трансформатор ідеальний то, якщо напруга u1 на первинній обмотці трансформатора змінюється за синусоїдним законом, то напруга на вторинній обмотці u2 також буде синусоїдна.

Струм iа через діод, а отже, і через резистор навантаження iн з'являється в ті півперіоди, коли потенціал точки а вище за потенціал точки б вторинної обмотки трансформатора, оскільки в ці півперіоди діод Д відкритий. Коли потенціал точки а негативний відносно потенціалу точки б, діод закритий, струм в ланцюзі рівний нулю. Таким чином, струм в резисторі Rн з'являється тільки в одному з півперіодів напруги u2, а схема називається однопівперіодною. У випадку припущення ідеального діода –  в позитивний півперіод напруги u2 величина напруги на резисторі навантаження рівна величині u2, а на діоді нулю, і у відємний  півперіод uН=0, а величина uа = u2.

У цій схемі Uн.ср=0,45U2, і тоді    .

             

Рис.3.2.

Недоліки цієї схеми:

- мале середнє значення струму навантаження Iн.ср;

- велика зворотна напруга Uзв.макс = U2m;

- високий рівень пульсацій (коефіцієнт пульсації ).

Ці недоліки усуваються в двопівперіодних схемах випрямлячів, в яких використовуються обидва періоди напруги мережі.

2. Двопівперіодний випрямляч з середньою точкою трансформатора.

Випрямляч з виводом середньої точки вторинної обмотки трансформатора є двопівперіодним випрямлячем, схема і часові діаграми якого приведені на рис3.3 і 3.4.

Рис.3.3.

Випрямляч складається з трансформатора з вторинною обмоткою має середню точку, двох діодів Д1 і Д2 і резистора навантаження Rн, ввімкненого між середньою точкою трансформатора і катодами двох діодів.

Схему можна розглядати як поєднання двох однопівперіодних випрямлячів ввімкнених на загальне навантаження.

            

Рис.3.4.

Вважаємо, що напруги на кожній половині вторинної обмотки трансформатора рівні між собою u2а = u2б = u2.

Протягом додатної половини періоду напруги u точки а схеми має вищий потенціал (++), ніж середня точка (+) і ще вищий потенціал, ніж точка б. При цьому діод Д1 відкритий, струм в резисторі навантаження  iн = iа1, до діода Д2 прикладена напруга рівна uаб.

У перебігу другої половини періоду напруги точка а має найнижчий потенціал (--), середня точка - вищий, а точка б найвищий потенціал (+), діод Д2 відкритий, струм в резисторі навантаження iн = iа2 і має такий самий напрям, що і в першому півперіоді.

У такій схемі величина Uн.ср = 0,9U2, і струм навантаження визначається за формулою:

,

значить Iн.ср і Uн.ср в два рази вище, ніж в однопівперіодному випрямлячі. Пульсації значно менше (коефіцієнт пульсації р 0,67), проте зворотна напруга на закритих діодах удвічі більше

    Uзв.макс = 2U2m

3. Мостова схема випрямляча

Найпоширенішою схемою є мостова схема двопівперіодного випрямляча (рис.3.5) відповідні часові діаграми якої приведені на рис.3.6.

Рис.3.5.

                                                                                       Рис.3.6.

У цій схемі діоди Д1-Д4 включені по мостовій схемі, до однієї діагоналі якої підведена змінна напруга u2, а до іншої підключений резистор навантаження Rн.

 

Протягом першої половини періоду напруги u2, коли потенціал точки а додатний, а точки б -від’ємний, діоди Д1, Д3 відкриті, а Д2, Д4 - замкнуті, струм iн тече через діод Д1, резистор навантаження Rн і діод Д3. До діодів Д2, Д4 прикладено напругу вторинної обмотки трансформатора u2. У інший півперіод напруги u2 потенціал точки а нижче за потенціал точки б і діоди Д2, Д4 відкриті, а Д1, Д3 закриті, при цьому струм iн тече через діод Д2, резистор навантаження Rн і діод Д4 в тому ж напрямі, що і в перший півперіод напруги.

При цьому середній струм Iн.ср і середня напруга Uн.ср на навантаженні в два рази перевищують струм і напругу однопівперіодного випрямляча, а пульсації такі ж як у випрямлячі з середньою точкою.

Зворотна напруга на діодах в закритому стані рівна відповідно Uзв.макс = U2m.

Величина Uн.ср = 0,9U2 і струм навантаженню визначається  формулою:

.

 

4. Згладжуючі фільтри

Випрямлена напруга має пульсуючий характер і її не можна безпосередньо використовувати для живлення електронних пристроїв. Тому для зменшення ступеня пульсації на виході випрямляча застосовують згладжуючі фільтри.

Фільтри складаються з конденсаторів і котушок індуктивності. Основні види фільтрів: ємнісний, індуктивний і змішаний.

Фільтр ємнісний (рис.3.7а) вмикається паралельно до резистора навантаження і шунтує його для складової струму. При цьому конденсатор Cф спочатку заряджається під дією випрямленої напруги uВ, а потім розряджається через резистор Rн. Якщо постійна часу розряду конденсатора = CфRн значно перевищує період напруги u2, то напруга при розряді зменшується неістотно (рис.3.7б), що приводить до значного збільшення середнього значення напруги на резисторі навантаження Uн.ср і до зниження ступеня пульсації випрямленої напруги.

Фільтр ємностний використовується для слабких струмів і невеликої потужності, тобто при високоомному навантаженні.

  

      а)      б)

     Рис.3.7.

При цьому основною характеристикою фільтру є коефіцієнт згладжування        ,

     де: Рвх   - коефіцієнт пульсації на вході фільтру;

Рвих - коефіцієнт пульсації на виході фільтру.

Для випрямлячів великої і середньої потужності застосовуються індуктивні фільтри які вмикаються послідовно з резисторами навантажень (рис.3.8а).

В результаті змінна складова струму через навантаження значно зменшується і знижує ступінь пульсації випрямленої напруги (рис.3.8б).

  

      а)      б)

     Рис.3.8.

Частіше використовуються змішані фільтри: Г-подібний LС-фільтр (рис.3.9) або П-подібний CLC-фільтр (рис.3.10). Вони забезпечують вищий ступінь згладжування випрямленої напруги.

   

        

                             Рис.3.9.                          Рис.3.10.

5. Зовнішні характеристики випрямлячів

 Залежність напруги від величини струму навантаження Uн = f(Iн) називають зовнішньою характеристикою випрямляча. Вона визначається формулою:

   

де: Uн.хх - напруга на навантаженні на холостому ходу (Iн=0);

Rтр     - активний опір трансформатора;

Rд       - опір діода в прямому напрямі.

На рис.3.11 представлені зовнішні характеристики деяких типів випрямлячів з фільтрами і без них: 1 -  однопівперіодний випрямляч без фільтру;

2 -  двопівперіодний випрямляч без фільтру;

3 -  однопівперіодний випрямляч з С-фільтром;

4 -   двопівперіодний випрямляч з RС-фільтром;

 

    Рис.3.11.

Хід роботи

1. Використовуючи як навантаження опір R, зніміть три зовнішні характеристики однопівперіодного випрямляча Ud = f(Id) (див. методику зняття зовнішніх характеристик):

- для випрямляча без фільтру;

- для випрямляча з C-фільтром (фрагмент схеми представлений на рис.3.7а);

- для випрямляча з CLC-фільтром (фрагмент схеми представлений на рис.3.10).

Для R=100 Ом замалюйте три осцилограми вихідної напруги з урахуванням масштабу.

Схема досліду зображена на рис.3.12.

Рис.3.12.

2.  Замалюйте з урахуванням масштабу для Rн=100 Ом осцилограму вихідної напруги двопівперіодного випрямляча з середньою точкою трансформатора, зображеного на рис.3.3.

3. Використовуючи як навантаження опір R, зніміть три зовнішні характеристики двопівперіодного мостового випрямляча Ud=f(Id) (див. методику зняття зовнішніх характеристик):   

                                     - для випрямляча без фільтру;

     - для випрямляча з C-фильтром (фрагмент схеми представлений на рис.3.7а);

  - для випрямляча з CLC-фільтром (фрагмент схеми представлений на рис.3.10).

Для R=100 Ом замалюйте три осцилограми вихідної напруги з урахуванням масштабу.

Схема дослідження двопівперіодного мостового випрямляча зображена на рис.3.15.

Рис.3.15.

  1.  Побудуйте зовнішні характеристики випрямляючих пристроїв в єдиній системі координат і зробіть висновки по роботі.

 

Контрольні запитання

  1.  По осцилограмах вихідної напруги, визначте, чи здійснює випрямляючий міст однопівперіодне чи двопівперіодне випрямлення?
  2.  Як розрізняються змінні складові напруг на вході і виході випрямляючого моста?
  3.  Чим відрізняються вихідні напруги в схемах з випрямним мостом і двопівперіодним випрямлячем з відводом від середньої точки трансформатора?
  4.  Порівняйте максимальні зворотні напруги на діодах для схем випрямного
    моста і двопівперіодного випрямляча з відводом середньої точки трансформатора.
  5.  Чи однакові середнє значення вихідної напруги Ud (постійна складова)
    випрямного моста і двопівперіодного випрямляча?
  6.   Чи однакові частоти вхідної і вихідної напруги випрямного моста? Як вони співвідносяться з частотами вхідної і вихідної напруг двопівперіодного випрямляча?
  7.  Чи перевищує максимальна зворотна напруга Umax на діоді мостового випрямляча значення, гранично допустиме для діода 1N4009?

Методики проведення дослідів

Методика зняття зовнішніх характеристик

При знятті зовнішніх характеристик випрямляючих пристроїв необхідно змінювати опір резистора Rн в ланцюзі навантаження. Для цього відкриваємо діалогове вікно резистора за допомогою правої кнопки миші. У наступних вікнах натискаємо кнопки Component Properties і Value,  встановлюємо необхідний опір, одержуємо покази  приладів і записуємо у таблицю А.

  Таблиця А

R (Ом)

    

     100

     80

     60

      40

      20

Id (A)  

Ud (B)

Методика роботи з осцилографом приводиться у лабораторній роботі №8.

 


 

А также другие работы, которые могут Вас заинтересовать

22984. Мультипроцесорні системи 4.79 MB
  Дійсно звернення до пам’яті або до зовнішніх пристроїв та захоплення системної шини дозволяється одночасно лише одному з процесорів тоді як останні повинні в цей час переробляти раніш одержані дані або знаходитись в режимі очікування. Такий часовий розподіл загальних ресурсів системи має назву арбітражу системної шини і виконується групою пристроїв спеціальних ІМС так званих арбітрів шини. Арбітр шини дозволяє захоплення системної шини лише одному з процесорів що виставили запит тому котрий посідає найвищого пріоритету і...
22985. Мікропроцесори 80386 і 80486 4.79 MB
  Це дозволяє йому здійснювати обмін з пам’яттю зі швидкістю до 32 Мбайт сек і виконувати до 5 мільйонів операцій у секунду MIPS. Отже під час виконання одної команди відбувається декодування другої а третя видобувається з пам’яті. Усі можливості МП386 мультипрограмність віртуальна пам’ять захист пріоритети зповна відкриваються лише в захищеному режимі. У порівнянні з МП286 у МП386 існують істотні відміни в організації віртуальної пам’яті.
22986. Поняття про RISC-процесори. Процесори п’ятого та шостого поколінь 6.22 MB
  Процесори п’ятого та шостого поколінь Поняття про RISCпроцесори Якісний стрибок у розвитку мікропроцесорних систем відбувся з появою мікропроцесора 8086. Такі процесори і комп’ютери дістали назву RISC процесорів та RISC комп’ютерів на відміну від процесорів та комп’ютерів зі складною системою команд Complex Instruction Set Computer CISC комп’ютер. Перший €œсправжній€ RISC комп’ютер було створено наприкінці 70х років в університеті Берклі.
22987. Діагностика несправностей у мікропроцесорних системах 739 KB
  Тут можна навести таку наочну аналогію: візьміть на сторінці друкованого тексту вертикальний рядок літер що розташовані одна над одною і спробуйте встановити зміст тексту. Тому третя трудність полягає у тому щоб будьякимсь чином представити інформацію що міститься у вихідному тестсигналі у компактній та зрозумілій формі по якій можна було б судити про справність або несправність пристрою що перевіряється. Тестпрограма повинна бути періодичною щоб можна було проконтролювати відтворюваність її результатів від кількох актів тестування....
22988. Декотріі принципи роботи сучасних мікропроцесорів та ЕОМ 1.54 MB
  Вони показують яка команда виконується до якої комірки пам’яті або зовнішнього пристрою звертається процесор і містять іншу важливу і вичерпну інформацію. Після того як у програмі дається сигнал €œвивільнити мікросхему€ вміст усіх регістрів переписується в область пам’яті що має назву сегмента стану задачі TSS Taske State Segment. При роботі у мультипрограмному режимі можуть виникати певні труднощі з використанням оперативної пам’яті котра стає тепер вже загальною для кількох задач. Можливі непередбачені ситуації коли одна програма...
22989. Віртуальна пам’ять. Мікропроцесор 80286 4.24 MB
  Мікропроцесор 80286 Як добре відомо процесор може безпосередньо працювати лише з тією інформацією яка записана в його оперативній пам’яті. Однак об’єм оперативної пам’яті у сучасних ЕОМ порівняно невеликий і часто виявляється недостатнім для розв’язання більшменш складних задач. Віртуальна організація пам’яті дає користувачеві практично необмежений об’єм пам’яті.
22990. Артикуляційна база мови 33 KB
  Робота органів мовлення тобто сукупність їх порухів при вимові певного звука називається артикуляцією від лат. excursio вибігання вилазка або приступ початковий рух органів мовлення підготовка органів мовлення до вимови звука. culmen вершина або витримка поло' ження органів мовлення в момент вимовляння звуків. recursio повернення або відступ повернення органів мовлення у вихідне положення.
22991. Будова мовного апарату і функції його найважливіших частин 36 KB
  Мовленнєвий апарат І порожнина рота; II глотка фаринкс; III порожнина носа; IV гортань; 1 трахея; 2 голосова зв'язка; 3 неправдива голосова зв'язка; 4 щитовидний хрящ; 5 персневидний хрящ; 6 під'язикова кістка; 7 надгортанник; 8 язик; 9 тверде піднебіння; 10 м'яке піднебіння. Верхній поверх надставна порожнина її ще називають надставною трубою до якої належать порожнини глотки фаринкс рота і носа. Коли м'яке піднебіння опущене порожнина рота змикається з порожниною носа і частина повітря проходить...
22992. Акустичний аспект вивчення звукової будови мови 30.5 KB
  Акустичний аспект вивчення звукової будови мови Акустика розрізняє в звуках силу висоту довготу і тембр. Сила звука залежить від амплітуди розмаху коливання: чим більша амплітуда тим звук сильніший. Так скажімо що сильніше ударити по струні то більшою буде й амплітуда коливання і відповідно сила звука. Висота звука залежить від частоти коливань за одиницю часу: чим більша частота коливань тим вищий звук.