13259

Погрешности измерений. Цели математической обработки результатов эксперимента

Лабораторная работа

Физика

Погрешности измерений Основой всего естествознания является наблюдение и эксперимент. Наблюдение - это систематическое целенаправленное восприятие того или иного объекта или явления без воздействия на изучаемый объект или явление. Наблюдение позволяет получит...

Русский

2013-05-11

107 KB

7 чел.

Погрешности измерений

 

Основой всего естествознания является наблюдение и эксперимент.

Наблюдение это систематическое, целенаправленное восприятие того или иного объекта или явления без воздействия на изучаемый объект или явление. Наблюдение позволяет получить первоначальную информацию по изучаемому объекту или явлению.

Эксперимент метод изучения объекта, когда исследователь активно и целенаправленно воздействует на него путем создания искусственных условий или использует естественные условия, необходимые для выявления соответствующих свойств. Достоинствами эксперимента по сравнению с наблюдением реального явления или объекта является:

  1.  Возможность изучения в «чистом виде», без влияния побочных факторов, затемняющих основной процесс;
  2.  В экспериментальных условиях можно получить результат более быстро и точно;
  3.  При эксперименте можно проводить испытания столько раз, сколько это необходимо.

Результат эксперимента или измерения всегда содержит некоторую погрешность. Если погрешность мала, то ею можно пренебречь. Однако при этом неизбежно возникают два вопроса: вопервых, что понимать под малой погрешностью, и, вовторых, как оценить величину погрешности. То есть, и результаты эксперимента нуждаются в определенном теоретическом осмыслении.

Цели математической обработки результатов эксперимента

Целью любого эксперимента является определение качественной и количественной связи между исследуемыми параметрами, либо оценка численного значения какого-либо параметра.

В некоторых случаях вид зависимости между переменными величинами известен по результатам теоретических исследований. Как правило, формулы, выражающие эти зависимости, содержат некоторые постоянные, значения которых и необходимо определить из опыта.

Другим типом задачи является определение неизвестной функциональной связи между переменными величинами на основе данных эксперимента. Такие зависимости называют эмпирическими.

Однозначно определить неизвестную функциональную зависимость между переменными невозможно даже в том случае, если бы результаты эксперимента не имели погрешностей. Тем более не следует этого ожидать, имея результаты эксперимента, содержащие различные погрешности измерения.

Поэтому следует четко понимать, что целью математической обработки результатов эксперимента является не нахождение истинного характера зависимости между переменными или абсолютной величины какой-либо константы, а представление результатов наблюдений в виде наиболее простой формулы с оценкой возможной погрешности ее использования.

Виды измерений и причины погрешностей

Под измерением понимают сравнение измеряемой величины с другой величиной, принятой за единицу измерения.

Различают два типа измерений: прямые и косвенные. При прямом измерении измеряемая величина сравнивается непосредственно со своей единицей меры. Например, измерение микрометром линейного размера, промежутка времени при помощи часовых механизмов, температуры термометром, силы тока амперметром и т.п. Значение измеряемой величины отсчитывается при этом по соответствующей шкале прибора.

При косвенном измерении измеряемая величина определяется (вычисляется) по результатам измерений других величин, которые связаны с измеряемой величиной определенной функциональной зависимостью. Например, измерение скорости по пройденному пути и затраченному времени, измерение плотности тела по измерению массы  и объема, температуры при резании по электродвижущей силе, величины силы по упругим деформациям и т.п.

При измерении любой физической величины производят проверку и установку соответствующего прибора, наблюдение их показаний и отсчет. При этом никогда истинного значения измеряемой величины не получить. Это объясняется тем, что измерительные средства основаны на определенном методе измерения, точность которого конечна. При изготовлении прибора задается класс точности. Его погрешность определяется точностью делений шкалы прибора.

Кроме приборной погрешности на результат измерения влияет еще ряд объективных и субъективных причин, обуславливающих появление погрешностей измерения разности между результатом измерения и истинным значением измеряемой величины. Погрешности измерения обычно неизвестна, как неизвестно и истинное значение измеряемой величины. Исключение составляют измерения известных величин при определении точности измерительных приборов или их тарировке. Поэтому одной из важнейших задач математической обработки результатов эксперимента и является оценка истинного значения измеряемой величины по данным эксперимента с возможно  меньшей погрешности.

Типы погрешностей измерения

Кроме приборной погрешности измерения (определяемой методом измерения) существуют и другие, которые можно разделить на три типа:

1. Систематические погрешности обуславливаются постоянно действующими факторами. Например, смещение начальной точки отсчета, влияние нагревания тел на их удлинение, износ режущего лезвия и т.п. Систематические погрешности выявляют при соответствующей тарировке приборов и потому они могут быть учтены при обработке результатов измерений.

2. Случайные погрешности содержат в своей основе много различных причин, каждая из которых не проявляет себя отчетливо. Случайную погрешность можно рассматривать как суммарный эффект действия многих факторов. Поэтому случайные погрешности при многократных измерениях получаются различными как по величине, так и по знаку. Их невозможно учесть как систематические, но можно учесть их влияние на оценку истинного значения измеряемой величины. Анализ случайных погрешностей является важнейшим разделом математической обработки экспериментальных данных.

3. Грубые погрешности (промахи) появляются вследствие неправильного отсчета по шкале, неправильной записи, неверной установки условий эксперимента и т.п. Они легко выявляются при повторном проведении опытов.

В дальнейшем будем считать, что систематические и грубые погрешности из результатов эксперимента исключены.

Свойства случайных погрешностей

Случайные погрешности бывают как положительные, так и отрицательные разной величины, не превосходящей определенного предела. Если обозначить через  истинное значение измеряемой величины, а результат первого измерения , то их разность  или  называют истинной абсолютной погрешностью одного измерения. Одновременно она является случайной (при исключении систематических и грубых погрешностей).

Если измерения провести многократно в одних и тех же условиях, то результаты отдельных измерений одинаково надежны. Такую совокупность измерений , ,..., называют равноточными измерениями. Если проанализировать достаточно большую серию равноточных измерений и соответствующих случайных погрешностей измерений, то можно выделить 4 свойства случайных погрешностей:

  1.  Число положительных погрешностей почти равно числу отрицательных;
  2.  Мелкие погрешности встречаются чаще, чем крупные;
  3.  Величина наиболее крупных погрешностей не превосходит некоторого определенного предела, зависящего от точности измерения. Самую большую погрешность в ряду равноточных измерений называют предельной погрешностью;
  4.  Частные от деления алгебраической суммы всех случайных погрешностей на их общее близко к нулю, т.е.

Погрешности косвенных измерений

Часто измеряется не непосредственно интересующая нас величина, а другая, зависящая от нее некоторым образом. Например, при резании металлов часто непосредственно измеряются деформации, ЭДС, по которым судят о возникающих силах и температурах. При этом также необходимо оценить погрешность измерения.

При косвенных измерениях значение y измеряемой величины находят по некоторой формуле:

где ,,…, средние арифметические измеряемые непосредственно величины. Рассмотрим функцию общего вида:

где ,,…, независимые переменные, для определения которых производятся n прямых независимых измерений по каждой .

Обозначим значения переменных через среднее значение и отклонения

Эту функцию представим рядом Тейлора, ограничив его первыми членами ряда (принимая )

,

где   производная функции по , взятая в точке .

Учитывая, что  получаем:

.

Чтобы учесть погрешности  всех  опытов целесообразно использовать средние квадратические оценки , так как .

Возведем в квадрат левую и правую части уравнения и разделим на

.

Здесь суммы удвоенных произведений типа

 

согласно четвертому свойству случайных ошибок ().

Тогда в левой и правой частях имеем среднеквадратические погрешности функции и аргументов

.

В качестве меры точности лучше выступает не абсолютная, а относительная погрешность :

где - действительное значение измеряемой величины, - абсолютная погрешность измерения.

Рассмотрим ее определение на примере. Пусть

 

Тогда

; ;

Аналогично можно определить относительную погрешность и при других зависимостях.  Зная относительную погрешность, можно определить и абсолютное ее значение: .

Порядок обработки результатов измерений

При практической обработке результатов измерений необходимо последовательно выполнить следующие операции

  1.  Записать результаты измерений;
  2.  Вычислить среднее значение из  измерений
  3.  Определить погрешности отдельных измерений ;
  4.  Оценить относительную погрешность результатов измерений
  5.  Записать окончательный результат ;


 

А также другие работы, которые могут Вас заинтересовать

74805. 2 и 3 законы Ньютона. Связь с 1 законом. Импульс, сила, импульс силы 34.5 KB
  Импульс сила импульс силы второй закон Ньютона: ускорение приобретаемое материальной точкой телом совпадает по направлению с действующей на нее силой и равно отношению этой силы к массе материальной точки.
74806. Закон сохранения импульса. Принцип реактивного движения. Уравнения Мещерского и Циолковского 65.5 KB
  Таким образом, уравнение движения тела переменной массы имеет следующий вид: (2.13) Уравнение (2.13) называется уравнением И.В. Мещерского. Применим уравнение (2.12) к движению ракеты, на которую не действуют никакие внешние силы.
74807. Работа переменной силы. Кинетическая, потенциальная энергии 144.5 KB
  Кинетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.
74808. Закон сохранения энергии в механике. Консервативные, диссипативные системы. Примеры 26 KB
  В замкнутой системе тел, силы взаимодействия между которыми консервативны (потенциальны), отсутствуют взаимные превращения механической энергии в другие виды энергии. Такие системы называются замкнутыми консервативными и для них справедлив закон сохранения энергии...
74809. Динамика вращательного движения абсолютно твердого тела. Центр массы. Момент инерции. Кинетическая энергия 57.5 KB
  Неподвижная ось вращения z может проходить как через центр инерции тела (ось вращения маховика, ротора турбины и т.п.), так и вне его (например, ось вращения самолета, выполняющего мертвую петлю). Если известен момент инерции тела относительно оси, проходящей через его центр масс...
74810. Основной закон динамики вращательного движения. Закон сохранения момента импульса. Примеры 87 KB
  Векторная сумма моментов всех внешних сил приложенных к телу называется результирующим или главным моментом внешних сил относительно точки О: Векторная сумма моментов импульса всех материальных точек тела называется моментом импульса тела относительно точки...
74811. Элементы теории поля. Потенциал, градиент потенциала и напряженность поля. (Пример - гравитационное поле) 66 KB
  Потенциал градиент потенциала и напряженность поля. Гравитационное взаимодействие между телами осуществляется с помощью поля тяготения или гравитационного поля. Основное свойство поля тяготения заключается в том что на всякое тело массой т внесенное в это поле действует сила тяготения...
74812. Закон всемирного тяготения. Движение в поле тяготения. Центральные силы. Гравитационное поле и его напряженность 38.5 KB
  Если материальная точка совершает движение под действием центральной силы с центром O, то момент количества движения точки сохраняется, а она сама совершает движение в плоскости, перпендикулярной вектору момента количества движения относительно точки O и проходящей через эту точку O.
74813. Особенности творческого пути А.С. Грибоедова. История создания и публикации «Горя от ума». Чацкий как герой эпохи 1810 –1820-х годов и «вечный» конфликт «старого и нового». Элементы классицизма, романтизма и реализма в комедии 15.67 KB
  Элементы классицизма романтизма и реализма в комедии. Замысел комедии возник в 1820 году по некотором данным уже в 1816 но активная работа над текстом начинается в Тифлисе после возвращения Грибоедова из Персии. В 1825 году с большими цензурными сокращениями были напечатаны отрывки из I и III актов комедии но разрешение на её постановку получить не удалось. Роль Чацкого главная роль без которой не было бы комедии а была бы пожалуй картина нравов.