13264

Исследование разветвлённой цепи переменного тока

Лабораторная работа

Физика

Лабораторная работа № 5 Исследование разветвлённой цепи переменного тока. Цель работы: Исследование зависимостей параметров разветвлённой цепи переменного тока от частоты. Исследование резонанса токов.

Русский

2013-05-11

1.04 MB

43 чел.

Лабораторная работа № 5

Исследование разветвлённой цепи переменного тока.

Цель работы: Исследование зависимостей параметров  разветвлённой цепи  переменного тока от частоты. Исследование резонанса токов.                                                                                                                                    

Приборы:              1. Универсальный стенд.

                              2. Вольтметр.

                               3. Генератор.

5.1.Теоретическое введение

Комплексная, полная, активная и реактивная проводимости.

В цепях синусоидального тока, как и в цепях постоянного тока, вводится понятие проводимости. Под комплексной проводимостью  понимают отношение комплексного действующего значения тока к комплексному действующему значению напряжения (или комплексных амплитуд )

                                                                                              5.1

Так как , то

                                                           5.2

Действительную часть комплексной проводимости обозначают  

                                                                                5.3

и называют активной проводимостью. Важно отметить, что выражение активной проводимости при синусоидальном токе отличается от выражения проводимости при постоянном токе и зависит как от активного R, так и от реактивного сопротивления.

   Мнимую часть комплексной проводимости обозначают

                                                                                       5.4

и называется реактивной проводимостью. Реактивная проводимость зависит как от реактивного, так и от активного сопротивления.

Так как реактивное сопротивление , то

                                                                      5.5

где

                                                                                                  5.6

индуктивная проводимость;

                                                                                                 5.7   

ёмкостная проводимость.

Модуль и аргумент комплексной проводимости. Треугольник проводимостей.

С учётом принятых обозначений (5.2) можно записать в виде

                                                                                             5.8

или в показательной форме

                                                                   5.9

здесь

                                                             5.10

- модуль, или полная проводимость.

                                                                    5.11

- аргумент проводимости.

Записав все величины в (5.1) в показательной форме, получим

                                                                  5.12

откуда следует, что полная проводимость , - угол сдвига фаз между напряжением и током, равный аргументу проводимости с обратным знаком.

Формулы (5.10) и (5.11) легко получаются из так называемого треугольника проводимостей (рис. 5.1)

               

Рис. 5.1. Треугольник проводимостей

Из (5.1) следует выражение закона Ома через комплексную проводимость

                                                                                                      5.13

Из формул (5.3) и (5.4), связывающих проводимости с сопротивлениями, можно выразить сопротивления через проводимости

                                               

                                                                                    5.14

Резонанс токов. Он возможен в цепи с параллельным соединением двух ветвей с параметрами , , , в параллельном контуре (рис. 5.2)

Рис. 5.2. Параллельный контур.

Из определения резонанса следует, что угол сдвига фаз при резонансе равен нулю. Так как

                                           

то при резонансе . Учитывая (5.3) и (5.10), получаем

                                              

или  

                                                                         5.15

где  - циклическая частота резонанса токов.

Из (5.15.) после преобразований имеем:

                                                            5.16

Из (5.16.) следует ряд выводов.

1. Резонансная частота  при  резонансе токов зависит не только от параметров реактивных элементов , но и от активных сопротивлений   и

2.   Резонанс токов возможен, если сопротивления  и  или больше , или меньше , в этом случае подкоренное выражение в (5.16) положительное , в противном – невозможен ( - мнимая величина.)

3. Если  и =, резонансная частота ( = ) имеет неопределённое значение, что означает существование резонанса (совпадение фаз напряжения питания и общего тока.) при любой частоте.

4. При  и <<, что справедливо для многих цепей, , т.е. резонансная частота при резонансе токов равна резонансной частоте при резонансе напряжений.

Рассмотрим характерные особенности контура с малыми потерями при резонансе токов с учётом того, что активные сопротивления  и  не изменяются.

1. Так как   и общее сопротивление контура активное, то полная проводимость контура равна активной проводимости и практически минимальна:

Сопротивление контура при этом активное и практически максимальное:

2. Ток в неразветвлённой части цепи практически минимальный: , что позволяет обнаруживать резонанс токов в контуре при изменении частоты  , параметров  и .

3. Активные и реактивные составляющие токов:

                                                  

                                                  

                                                  

                                                  

Так как  то реактивные составляющие токов при резонансе равны и

                                                    

Векторная диаграмма цепи при резонансе токов (рис. 5.3) строится также, как для любой параллельной цепи, но с учётом особенностей режима резонанса ()

          

Рис. 3 Векторная диаграмма цепи при резонансе токов

Ток в общей цепи равен активной составляющей тока:

                                                  

Ток в ветвях

                                                 

                                                 

Если , , т.е. , , то ,  и  , т,.е. токи в ветвях значительно больше, чем ток в неразветвлённой части цепи. Это свойство – усиление тока – является важнейшей особенностью резонанса токов и широко используется на практике. Отсюда и название этого явления.

4. Коэффициент усиления по току (при резонансе ) при

=   =   =

т.е равен добротности контура.

5. Реактивные мощности , так как , . Это означает, что, как и при резонансе напряжений, между катушкой и конденсатором происходит обмен энергией, но источник питания в этом обмене не участвует: источник только восполняет потери в активных сопротивлениях контура.

Рассмотрим частотную характеристику «идеального» контура (рис. 5.4)

Т.е. контура, у которого  и резонансная частота . Индуктивная проводимость такого контура . Этим выражением соответствуют характеристики   (на рис. 5.5)

Рис. 5.4 Схема «идеального» контура.                                                             

Рис. 5 Характеристики

Рис. 5.6 Частотная характеристика «идеального» контура.

 Резонансные кривые построены при U=const в соответствии с определением токов

, ,. При 0<<контур индуктивный, при = в контуре имеет место резонанс токов и при  << контур ёмкостной.

5.2 Электрическая схема

5.3 Методика проведения эксперимента

  1.  Подключить генератор
  2.  Подключить вольтметры и измерить  напряжение на генераторе и участке цепи .
  3.  Подключить вольтметры и измерить напряжение  на участках   и.
  4.  Изменяя частоту генератора, добиться резонанса.
  5.  Добиться одинакового значения на резисторе.
  6.  Выбрать шаг изменения частоты генератора, произвести 15-20 измерений в области резонанса, как на уменьшение, так и на увеличение частоты.
  7.  Результаты занести в таблицу.
  8.  По результатам измерений найти , , добротность , характеристическое сопротивление   , полное сопротивление .

кГц.

В.

В.

В.

В.

Ом.

мА.

град.

град.

град.

Ом

Ом

Ом

Ом

5.4 Контрольные вопросы.

  1.  Комплексная, полная, активная и реактивная проводимости. Треугольник проводимости.
  2.  Условие, при которых выполняется резонанс токов.
  3.  Особенности контура с малыми потерями при резонансе токов.
  4.  Векторная диаграмма цепи при резонансе токов.
  5.  Частотные характеристики «идеального» параллельного контура.
  6.  Как определить наличие резонанса последовательного контура.
  7.  Что называется резонансом в электрических цепях? Виды резонансов.
  8.   Добротность и характеристическое сопротивление параллельного контура.
  9.  Вывести закон Ома для цепи переменного тока, содержащей  ,  и .


 

А также другие работы, которые могут Вас заинтересовать

63449. Объектовые средства обнаружения 172.5 KB
  Для обеспечения охраны и безопасности помещений необходимо выбрать соответствующие технические средства средства обнаружения которые в состоянии обеспечить высокую надежность выполнения возложенных на них задач. Средства обнаружения представляют собой системы и устройства устанавливаемые...
63451. Применение технических средств наблюдения для контроля территории 165 KB
  Телевизионные камеры и устройства для их оснащения Телевизионные камеры. Более простые и соответственно более дешевые камеры оснащаются как правило простейшими встроенными объективами более дорогие сменными объективами с улучшенными характеристиками и широкими функциональными возможностями.
63452. Выбор средств видеоконтроля для оборудования объектов 190.5 KB
  Учебные вопросы: Выбор средств видеоконтроля для оборудования объектов особенности их эксплуатации Размещение камеры в наблюдаемой зоне Условия эксплуатации ТСН Заключение Литература: ГОСТ Р 515582000. Телевизионные камеры цветного изображения в таких системах практически...
63454. Особенности построения систем контроля доступа 1.49 MB
  По мере накопления опыта создания и применения аппаратуры СКД началось ее активное внедрение на широкий рынок охранных систем. Особенности построения систем контроля доступа Под системой контроля доступа СКД понимают объединенные в комплексы электронные механические электротехнические аппаратнопрограммные...
63456. Рекомендации по выбору средств и систем контроля доступа 145.5 KB
  Аппаратура СКД должна убедиться что доступ предоставляется именно тому лицу которое зарегистрировано как законный пользователь т. Известны разработки СКД основанные на считывании и сравнении конфигураций сетки вен на запястье образцов запаха преобразованных в цифровой вид анализе носящего уникальный характер...
63457. Ограждения периметра, отдельных участков территории. Элементы инженерной укреплённости охраняемых объектов 204.5 KB
  Контроль за выполнением требований настоящего руководящего документа осуществляется подразделениями вневедомственной охраны при включении их представителей в комиссии по обследованию и приемке в эксплуатацию объектов.