13264

Исследование разветвлённой цепи переменного тока

Лабораторная работа

Физика

Лабораторная работа № 5 Исследование разветвлённой цепи переменного тока. Цель работы: Исследование зависимостей параметров разветвлённой цепи переменного тока от частоты. Исследование резонанса токов.

Русский

2013-05-11

1.04 MB

43 чел.

Лабораторная работа № 5

Исследование разветвлённой цепи переменного тока.

Цель работы: Исследование зависимостей параметров  разветвлённой цепи  переменного тока от частоты. Исследование резонанса токов.                                                                                                                                    

Приборы:              1. Универсальный стенд.

                              2. Вольтметр.

                               3. Генератор.

5.1.Теоретическое введение

Комплексная, полная, активная и реактивная проводимости.

В цепях синусоидального тока, как и в цепях постоянного тока, вводится понятие проводимости. Под комплексной проводимостью  понимают отношение комплексного действующего значения тока к комплексному действующему значению напряжения (или комплексных амплитуд )

                                                                                              5.1

Так как , то

                                                           5.2

Действительную часть комплексной проводимости обозначают  

                                                                                5.3

и называют активной проводимостью. Важно отметить, что выражение активной проводимости при синусоидальном токе отличается от выражения проводимости при постоянном токе и зависит как от активного R, так и от реактивного сопротивления.

   Мнимую часть комплексной проводимости обозначают

                                                                                       5.4

и называется реактивной проводимостью. Реактивная проводимость зависит как от реактивного, так и от активного сопротивления.

Так как реактивное сопротивление , то

                                                                      5.5

где

                                                                                                  5.6

индуктивная проводимость;

                                                                                                 5.7   

ёмкостная проводимость.

Модуль и аргумент комплексной проводимости. Треугольник проводимостей.

С учётом принятых обозначений (5.2) можно записать в виде

                                                                                             5.8

или в показательной форме

                                                                   5.9

здесь

                                                             5.10

- модуль, или полная проводимость.

                                                                    5.11

- аргумент проводимости.

Записав все величины в (5.1) в показательной форме, получим

                                                                  5.12

откуда следует, что полная проводимость , - угол сдвига фаз между напряжением и током, равный аргументу проводимости с обратным знаком.

Формулы (5.10) и (5.11) легко получаются из так называемого треугольника проводимостей (рис. 5.1)

               

Рис. 5.1. Треугольник проводимостей

Из (5.1) следует выражение закона Ома через комплексную проводимость

                                                                                                      5.13

Из формул (5.3) и (5.4), связывающих проводимости с сопротивлениями, можно выразить сопротивления через проводимости

                                               

                                                                                    5.14

Резонанс токов. Он возможен в цепи с параллельным соединением двух ветвей с параметрами , , , в параллельном контуре (рис. 5.2)

Рис. 5.2. Параллельный контур.

Из определения резонанса следует, что угол сдвига фаз при резонансе равен нулю. Так как

                                           

то при резонансе . Учитывая (5.3) и (5.10), получаем

                                              

или  

                                                                         5.15

где  - циклическая частота резонанса токов.

Из (5.15.) после преобразований имеем:

                                                            5.16

Из (5.16.) следует ряд выводов.

1. Резонансная частота  при  резонансе токов зависит не только от параметров реактивных элементов , но и от активных сопротивлений   и

2.   Резонанс токов возможен, если сопротивления  и  или больше , или меньше , в этом случае подкоренное выражение в (5.16) положительное , в противном – невозможен ( - мнимая величина.)

3. Если  и =, резонансная частота ( = ) имеет неопределённое значение, что означает существование резонанса (совпадение фаз напряжения питания и общего тока.) при любой частоте.

4. При  и <<, что справедливо для многих цепей, , т.е. резонансная частота при резонансе токов равна резонансной частоте при резонансе напряжений.

Рассмотрим характерные особенности контура с малыми потерями при резонансе токов с учётом того, что активные сопротивления  и  не изменяются.

1. Так как   и общее сопротивление контура активное, то полная проводимость контура равна активной проводимости и практически минимальна:

Сопротивление контура при этом активное и практически максимальное:

2. Ток в неразветвлённой части цепи практически минимальный: , что позволяет обнаруживать резонанс токов в контуре при изменении частоты  , параметров  и .

3. Активные и реактивные составляющие токов:

                                                  

                                                  

                                                  

                                                  

Так как  то реактивные составляющие токов при резонансе равны и

                                                    

Векторная диаграмма цепи при резонансе токов (рис. 5.3) строится также, как для любой параллельной цепи, но с учётом особенностей режима резонанса ()

          

Рис. 3 Векторная диаграмма цепи при резонансе токов

Ток в общей цепи равен активной составляющей тока:

                                                  

Ток в ветвях

                                                 

                                                 

Если , , т.е. , , то ,  и  , т,.е. токи в ветвях значительно больше, чем ток в неразветвлённой части цепи. Это свойство – усиление тока – является важнейшей особенностью резонанса токов и широко используется на практике. Отсюда и название этого явления.

4. Коэффициент усиления по току (при резонансе ) при

=   =   =

т.е равен добротности контура.

5. Реактивные мощности , так как , . Это означает, что, как и при резонансе напряжений, между катушкой и конденсатором происходит обмен энергией, но источник питания в этом обмене не участвует: источник только восполняет потери в активных сопротивлениях контура.

Рассмотрим частотную характеристику «идеального» контура (рис. 5.4)

Т.е. контура, у которого  и резонансная частота . Индуктивная проводимость такого контура . Этим выражением соответствуют характеристики   (на рис. 5.5)

Рис. 5.4 Схема «идеального» контура.                                                             

Рис. 5 Характеристики

Рис. 5.6 Частотная характеристика «идеального» контура.

 Резонансные кривые построены при U=const в соответствии с определением токов

, ,. При 0<<контур индуктивный, при = в контуре имеет место резонанс токов и при  << контур ёмкостной.

5.2 Электрическая схема

5.3 Методика проведения эксперимента

  1.  Подключить генератор
  2.  Подключить вольтметры и измерить  напряжение на генераторе и участке цепи .
  3.  Подключить вольтметры и измерить напряжение  на участках   и.
  4.  Изменяя частоту генератора, добиться резонанса.
  5.  Добиться одинакового значения на резисторе.
  6.  Выбрать шаг изменения частоты генератора, произвести 15-20 измерений в области резонанса, как на уменьшение, так и на увеличение частоты.
  7.  Результаты занести в таблицу.
  8.  По результатам измерений найти , , добротность , характеристическое сопротивление   , полное сопротивление .

кГц.

В.

В.

В.

В.

Ом.

мА.

град.

град.

град.

Ом

Ом

Ом

Ом

5.4 Контрольные вопросы.

  1.  Комплексная, полная, активная и реактивная проводимости. Треугольник проводимости.
  2.  Условие, при которых выполняется резонанс токов.
  3.  Особенности контура с малыми потерями при резонансе токов.
  4.  Векторная диаграмма цепи при резонансе токов.
  5.  Частотные характеристики «идеального» параллельного контура.
  6.  Как определить наличие резонанса последовательного контура.
  7.  Что называется резонансом в электрических цепях? Виды резонансов.
  8.   Добротность и характеристическое сопротивление параллельного контура.
  9.  Вывести закон Ома для цепи переменного тока, содержащей  ,  и .


 

А также другие работы, которые могут Вас заинтересовать

41272. Общая характеристика проблемы моделирования систем 134 KB
  Общая характеристика проблемы моделирования систем. Цели и проблемы моделирования систем. Классификация видов моделирования систем. Общая характеристика проблемы моделирования систем Характеристики моделей систем При моделировании рассматривают следующие характеристики моделей: 1.
41273. Возможности и эффективность моделирования систем на вычислительных машинах 123 KB
  Классификация видов моделирования систем продолжение. Возможности и эффективность моделирования систем на вычислительных машинах. Средства моделирования систем. Обеспечение имитационного моделирования.
41274. Математические схемы моделирования систем 238.5 KB
  При построении математической модели системы необходимо решить вопрос об ее полноте. Также должна быть решена задача упрощения модели которая помогает выделить в зависимости от цели моделирования основные свойства системы отбросив второстепенные. При переходе от содержательного к формальному описанию процесса функционирования системы с учетом воздействия внешней среды применяют математическую схему как звено в цепочке описательная модель – математическая схема – математическая аналитическая или и имитационная модель. Формальная...
41275. Непрерывно-детерминированные модели (D-схемы). Основные соотношения. Возможные приложения D-схемы 224 KB
  Они отражают динамику изучаемой системы и в качестве независимой переменной от которой зависят неизвестные искомые функции обычно служит время t. Элементарные системы Из этого уравнения свободного колебания маятника можно найти оценки интересующих характеристик. Очевидно что введя обозначения h2 = mMlM2 = LK h1 = 0 h0 = mMglM = 1 CK Ft = qt = zt получим обыкновенное дифференциальное уравнение второго порядка описывающее поведение этой замкнутой системы: h2d2zt dt2 h1dzt dt h0zt = 0 2.9 где h0 h1...
41276. Дискретно-детерминированные модели (F-схемы). Основные соотношения. Возможные приложения F-схемы 170.5 KB
  Система представляется в виде автомата как некоторого устройства с входными и выходными сигналами перерабатывающего дискретную информацию и меняющего свои внутренние состояния лишь в допустимые моменты времени. В каждый момент t = 0 1 2 дискретного времени Fавтомат находится в определенном состоянии zt из множества Z состояний автомата причем в начальный момент времени t = 0 он всегда находится в начальном состоянии z0 = z0. Другими словами если на вход конечного автомата установленного в начальное состояние z0 подавать в...
41277. Дискретно-стохастические модели (Р-схемы). Основные соотношения. Возможные приложения P-схемы. Непрерывно-стохастические модели (Q-схемы). Основные соотношения 159.5 KB
  Непрерывностохастические модели Qсхемы Основные соотношения Особенности непрерывностохастического подхода рассмотрим на примере типовых математических Qсхем – систем массового обслуживания англ. В качестве процесса обслуживания могут быть представлены различные по своей физической природе процессы функционирования экономических производственных технических и других систем например: потоки поставок продукции некоторому предприятию потоки деталей и комплектующих изделий на сборочном конвейере цеха заявки на обработку информации ЭВМ...
41278. Непрерывно-стохастические модели (Q-схемы) (продолжение). Возможные приложения Q-схем 140.5 KB
  В студенческом машинном зале расположены две ЭВМ и одно устройство подготовки данных УПД. Студенты приходят с интервалом в 8  2 мин и треть из них хочет использовать УПД и ЭВМ а остальные только ЭВМ. Работа на УПД занимает 8  1 мин а на ЭВМ – 17 мин. Кроме того 20 работавших на ЭВМ возвращаются для повторного использования УПД и ЭВМ.
41279. Сетевые модели (N-схемы). Основные соотношения. Возможные приложения N-схем 176.5 KB
  Сетевые модели Nсхемы. Сетевые модели Nсхемы Основные соотношения Для формального описания структуры и взаимодействия параллельных систем и процессов а также анализа причинноследственных связей в сложных системах используются сети Петри англ. Граф Nсхемы имеет два типа узлов: позиции и переходы изображаемые 0 и 1 соответственно. Граф Nсхемы является мультиграфом так как он допускает существование кратных дуг от одной вершины к другой.